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GLOSSARY
Accuracy
Accuracy refers to a measure of the difference between a measurement or estimate and a recognised 
standard value (e.g. the true value of a quantity). It is a measure of systematic error or bias. 

Air-gap
Air-gap refers to the space between the instantaneous sea surface and the lowest point in the circumference 
of the turbine blades.

Barometric altimeter
Barometric altimetry uses a barometer that is supplied with a nonlinear calibration to indicate altitude as 
determined based on the measurement of atmospheric pressure. The greater the altitude, the lower the 
pressure.

Bias
Bias refers to a systematic deviation of measurements and statistics from the truth due to characteristics 
of the experimental design (e.g. sampling, measurement, analysis). Hence, the extent to which a sampling, 
measurement or analytical method does not represent the population, value or statistic thought to be 
described. Here, bias is generally specific to each sampling method and can be quantified, but with varying 
degrees of difficulty. In practice, bias is generally measured as the difference between a raw measurement or 
the expected value of an estimator, and the true value of the quantity of interest.

Calibration
Calibration is an absolute assessment of the accuracy and precision of measurement values delivered by a 
sensor or instrument of a calibration standard with a known value (see Box 1).

Collision risk model (CRM)
Collision Risk Models are used to predict the number of bird collisions that might be caused by a wind farm 
development. The current industry standard in the UK is a stochastic version of the Band Model, which 
requires input parameters describing species-specific information on biometrics, flight characteristics and 
the expected amount of flight activity; and turbine-specific information on blade size, blade pitch, rotor 
rotation period and the anticipated proportion of time that turbines will be operational.

Cross-comparison
A cross-comparison assesses the outputs of two or more technologies or processes relative to each other, 
regardless of whether these processes are calibrated or validated. It provides relative measures of agreement 
which may or may not correspond to the agreement of either method with the truth (see Box 1).

Detection probability
Detection probability quantifies a sampling method’s ability to detect all available individuals.

Digital aerial survey (DAS)
Digital aerial surveys collect successive photographs or video from an aircraft as it transects the survey area.
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Ellipsoid
An ellipsoid is a geometrically perfect but simplistic model of mean sea level around the globe.

Eulerian
Eulerian survey designs sample at predetermined stations or along continuous transects and are often 
replicated through time. The primary objective of Eulerian sampling approaches is to obtain information 
about animal distribution and abundance in a predefined space and time.

Flight altitude, Flight height
Measures of the vertical location of a bird relative to a reference level. Flight height is generally used to 
describe the distance between a bird and the land or sea surface. Flight altitude is generally used to describe 
the distance between a bird and a specified reference value (e.g. mean sea level, chart datum). The terms 
are used interchangeably in much of the literature, so it is generally advised to qualify either term with a 
relevant reference value (see also Box 2).

Flight height distribution (FHD)
A flight height distribution is an idealised description of the bird behaviour that is realised as the frequency 
with which birds occupy airspace along the vertical axis. Inferences about the flight height distribution are 
based on flight height data, which consists of observations of said behaviour (see Box 2).

Geoid
A geoid is an irregular model of mean sea level around the globe, assuming only the influence of the local 
gravitational field and the rotation of the Earth (i.e. no effect of landmass, wind, or tide).

Ground sampling distance (GSD)
The ground sampling distance is the distance between two consecutive pixel centres measured on the ground, 
i.e. the image resolution in units of the imaged surface.

Highest astronomical tide (HAT)
The highest astronomical tide is the highest sea level that can be expected to occur under average 
meteorological conditions and under any combination of astronomical conditions over one lunar nodal cycle 
(18.6 years).
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Inertial measurement unit (IMU)
An inertial measurement unit is a device that can measure and report specific gravity and angular rate of an 
object to which it is attached. It is used to determine and record changes in pitch, roll, and yaw of a survey 
platform such as an aircraft or surface vessel.

Lagrangian
Lagrangian survey designs track individual animals through space and time using data logging or tracking 
devices.

Rangefinder
Rangefinders refer to methods that require observers to visually identify and track individual birds using 
optical instruments, while flight height is formally estimated using sensor-based (e.g. laser, compass, GPS, 
inclinometer) measurements (e.g. elevation angle, distance, bearing/azimuth) and basic mathematical 
principles (e.g. trigonometry). When paired with a compass and clock, laser rangefinders are sometimes 
referred to as ornithodolite.

Light detection and ranging (LiDAR)
LiDAR is a remote sensing method that uses light in the form of a pulsed laser to measure distances between 
objects and the sensor.

Lowest astronomical tide (LAT)
Lowest astronomical tide is the lowest sea level that can be expected to occur under average meteorological 
conditions and under any combination of astronomical conditions over one lunar nodal cycle (18.6 years).

Mean high water neaps (MHWN)
The height of mean high water neaps is the average throughout the year of two successive high waters when 
the tidal range is at its lowest (neap range).

Mean high water springs (MHWS)
The height of mean high water springs is the average throughout the year of two successive high waters 
when the tidal range is at its highest (spring range).

Mean low water neaps (MLWN)
The height of mean low water neaps is the average throughout the year of two successive low waters when 
the tidal range is at its lowest (neap range).

Mean low water springs (MLWS)
The height of mean low water springs is the average throughout the year of two successive low waters when 
the tidal range is at its highest (spring range).

Mean sea level (MSL)
Mean sea level is the datum for measurement of elevation and altitude.

Measurement error
Measurement error in this report generally refers to the precision (i.e. how close results are to one another) 
and accuracy (i.e. how close results are to the true value) of flight height measurements and/or related 
quantities associated with each method. See also sampling error.

Measurement error model
Measurement error models are statistical models that explicitly account for measurement errors in the 
quantities of interest.

Precision
A measure of the likely spread of repeated measurements or estimates of a quantity, hence a measure of 
random error.

Radio Detection And Ranging (radar)
Radar is a radiolocation system that uses radio waves to determine the distance (ranging), angle (azimuth), 
and radial velocity of objects relative to the site.
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Rotor swept zone (RSZ)
The rotor swept zone refers to the circular area defined by the blades as the turn.

Sampling error
Statistical error that occurs when methods (e.g. experimental design, sampling method) do not select a 
sample that represents the entire population of data. The difference between the sample result and the 
population characteristic being estimated. In practice, the sampling error can rarely be determined because 
the population characteristic is not usually known.

Sampling volume
Sampling volume refers to the volume of airspace that is effectively sampled by a method. The shape or 
geometry of this volume may be complex.

Sea surface height (SSH)
Sea surface height (SSH) is the height of the sea surface above a reference ellipsoid.

Trilateration
Trilateration is the use of distances for determining the unknown position coordinates of a point of interest, 
often around Earth (geopositioning).

Truncation
The process of limiting consideration or analysis to data that meet specific criteria.

Validation
Validation is the assessment that a process meets its predetermined specifications and quality attributes. In 
the offshore monitoring context this can be ‘internal’ validation or ‘ecological’ validation which tend to be 
achieved in this order during the study process: we start with internal/controlled validation of monitoring 
approaches before validating in real ecological circumstances (see Box 1).
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Executive summary
1.	 Significant growth within the offshore renewable energy industry (e.g. wind farms) is expected in the 

coming years and environmentally friendly development is a priority. Accurately predicting, mitigating, 
and compensating the ecological impacts of offshore development is therefore crucial to ensuring 
development can continue at pace without significant negative effects. Seabirds are a key component of 
marine ecosystems, and many species are potentially vulnerable to marine development. Offshore wind 
farms might impact seabird populations in several ways (e.g. displacement, barrier, and indirect effects) 
but direct mortality caused by collisions with turbines is of particular concern for several key species 
(e.g. Gannet, Kittiwake, and large gulls). 

2.	 For the purposes of environmental impact assessment, collision rates with offshore wind farm turbine 
rotors are predicted using collision risk models (CRMs) which provide a quantitative estimate of risk. 
Information on species’ flight height distributions is fundamental to predictions and continuous flight 
height distributions provide more robust estimates of mortality risk, compared to wider discrete flight 
height bands. Flight height data can be collected using a variety of sampling methods (e.g. visual 
surveys, photogrammetric digital aerial surveys, animal-borne tracking devices, radar, LiDAR), with 
which there are uncertainties (e.g. sampling error, measurement error) and logistical constraints (e.g. 
environmental conditions, species-specific behaviour).

3.	 This document presents a review of existing methods for collecting seabird flight height data and their 
potential to produce flight height distributions that might be used in CRMs. The strengths, weaknesses, 
and limitations of different methods are identified and sources of measurement and sampling error, 
uncertainty and bias assessed. Best practice recommendations are provided for prominent methods and 
how data might be best utilised to inform stakeholders is considered.

4.	 None of the methods reviewed could provide species-specific flight height distributions that were 
fully representative of the populations of interest under all relevant environmental conditions (i.e. 
biotic, abiotic) and across all ecologically important temporal scales (e.g. daily, seasonal, annual) of 
variation. Aside from animal-borne technologies, all sampling methods are vulnerable to systematic 
over- or underestimation of flight height in particular height bands (e.g. close to the sea-surface) which 
consequently impacts estimates of collision risk. Bias (positive and negative) is introduced via observer 
error (e.g. visual surveys), technical challenges (e.g. rangefinders), equipment limitations (e.g. radar, 
LiDAR, animal-borne tracking devices) and failure to account for variable detection probability within the 
surveyed area (all methods). 

5.	 Measurement errors are generally better understood than sampling errors. Accuracy of individual flight 
height estimates from several methods (e.g. rangefinders, stereophotogrammetry, high frequency (< 20s 
sampling interval) animal-borne tracking devices, LiDAR, microphone array) is generally within 10 m of 
true flight heights in favourable conditions. Measurement errors (precision) however can be more than 
100 m (e.g. visual surveys, photogrammetric digital aerial surveys, low frequency animal-borne tracking 
device) due to equipment characteristics (e.g. sensor accuracy, sampling frequency), human behaviour 
(e.g. height estimates) and from interactions between height measurements and supplementary data 
(e.g. sea level pressure, natural body size variation, and other reference values). Increasingly complex 
sampling methods (e.g. animal-borne GPS, aerial imagery) were found to simultaneously incorporate 
multiple sources of error which can interact to alter (e.g. inflate variance, introduce bias, distort shape) 
flight height distributions with consequences for CRMs. 

6.	 The lack of robust analytical procedures for determining heterogeneity in each method’s detection 
probabilities prevents the effectively sampled volume from being calculated for most if not all available 
methods. The true frequencies with which flight heights are distributed is therefore rarely estimated. 
Developing procedures to determine each method’s detection probability is therefore a priority, 
particularly for methods for which the theoretical surveyed volume can be determined relatively easily 
(e.g. LiDAR, aerial imagery). 
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7.	 Sampling in a temporally non-biased manner (e.g. with respect to weather conditions, daylight hours) was 
noted as a particularly widespread challenge and was therefore also highlighted as a research priority. 
Telemetry studies that focus on quantifying species-specific relationships between temporally varying 
conditions (e.g. weather, time of day, behavioural state) and flight height are best placed to improve 
understanding, but novel sampling designs and the incorporation of remotely sensed data will likely 
be required. However, no one method provides information that is representative of all environmental 
conditions or of spatial variation, for a given species; thus, the integration of information across multiple 
measurement methods is likely to be required to provide more representative flight height distributions. 

8.	 The continued development and assessment of methods for estimating seabird flight height distributions 
has significantly improved current understanding (e.g. limitations, uncertainty, collision risk). The 
potential accuracy of flight height estimates appears to be sufficiently high (< 10 m) to allow inferences 
at the vertical scales of interest (air gap, RSZ) and advanced statistical techniques (e.g. state-space 
models, nonlinear models) have allowed for a more rigorous quantification of uncertainty by describing 
the underlying distributions and providing confidence estimates. However, some methods (e.g. low-
frequency GPS, aerial photogrammetry) exhibit large flight height measurement errors (> 50 m) 
under some, or all observation conditions and it is therefore crucial that measurement uncertainty is 
considered routinely. There remains a lack of agreement in the flight height estimates produced by 
different methods and the way many observational studies are designed is a key driver of uncertainty. 
Most methods were not originally designed to sample flight height distributions (e.g. radar, LiDAR), 
many datasets were not originally collected to describe flight height distributions (e.g. animal-borne 
tracking devices) and environmental limitations (e.g. rangefinders) regularly require last minute 
changes to experimental designs which reduce their effectiveness. There is consequently a pressing 
need for the development of best-practice guidelines to help ensure studies are designed robustly 
and data collection/reporting is standardised. Technological advances are generating a wide range 
of novel opportunities for flight height studies. Continued progress will require clear documentation 
of all practical steps (e.g. methods, analysis) and data (i.e. raw) involved to be freely available to all 
stakeholders. 

9.	 Rangefinders, LiDAR, and animal-borne tracking devices (high frequency GPS) provide species-specific 
flight height distributions that are accurate and precise such that the underlying distributions can be 
statistically modelled. They are also capable of sampling prior to wind farm construction (i.e. baseline 
data collection) and may be scaled to regional/national operations. We therefore suggest that field 
validation of these methods is a useful research priority for the ReSCUE project. Other methods however 
can add value to current understanding (e.g. by being able to sample in inclement weather or at night) 
and such methods should be used where appropriate.
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1. INTRODUCTION

1.1. Background
Marine ecosystems are experiencing unprecedented rates of environmental change (e.g. biodiversity, 
temperature, pH) due to the direct (e.g. exploitation, development, disturbance) and indirect (e.g. climate 
change) impact of human activities (Bugnot et al. 2021, Gissi et al. 2021, Halpern et al. 2008). Understanding 
the consequences of such change to biodiversity is fundamental to sustainable ecosystem management and 
essential for environmental impact assessment (Rees et al. 2020). Significant growth within the offshore 
renewable energy industry (e.g. wind farms) is expected in the coming years to meet sustainable energy 
targets and sustainable development is a priority (GWEC 2023). Accurately predicting, mitigating and 
compensating the ecological impacts of offshore development is therefore crucial to ensuring development 
can continue at pace without significant negative effects (Fox et al. 2006, Rahman et al. 2022, Shields et al. 
2009).

Seabirds are a key component of marine ecosystems due to the wide range of ecological functions and 
ecosystem services (i.e. supporting, regulatory, cultural) they perform and provide (Grant et al. 2022, Mosbech 
et al. 2018, Signa et al. 2021). Many species are highly sensitive to environmental change (e.g. development, 
disturbance, climate change) and are therefore potentially vulnerable to marine development (Dias et al. 
2019, Mitchell et al. 2020). Offshore wind farms might impact seabird populations through temporary (i.e. 
disturbance) or permanent (i.e. habitat destruction/degradation) displacement, barrier effects (e.g. migration, 
foraging), indirect effects (e.g. though impacts on productivity and prey resources), and collision mortality 
(e.g. structure, rotors). Direct mortality, caused by birds colliding with turbines, is of particular concern for 
some species due to the high survival and longevity of seabirds (Bailey et al. 2014).

Collecting direct observations of birds colliding with turbines is difficult in most wind energy settings due to 
the spatial and temporal extent of the effort required. Collision events are also relatively rare and indirect 
monitoring via carcass searches is generally preferred in terrestrial settings. There are however several 
well recognised sampling biases associated with carcass detection probability (e.g. carcass persistence, 
searcher detection rate) which must be addressed (Aschwanden et al. 2018, Domínguez del Valle et al. 2020, 
Huso et al. 2016). Considerable efforts (e.g. dummy carcasses, search dogs) have improved the accuracy 
with which undetected carcass numbers are estimated within onshore wind farms but the approaches 
used are unsuitable for highly dynamic marine environments which can quickly transport carcasses away 
from collision sites. Direct observations of bird collisions with turbines have been recorded in the marine 
environment but a large amount of effort is required and the results are likely to be site- / turbine- / season- 
/ weather- / species-specific (e.g. Skov et al. 2018). For the purposes of environmental impact assessment, 
potential collision rates within offshore wind farms are predicted using collision risk models (CRMs) which 
provide a quantitative estimate of risk (Masden & Cook 2016). The standard CRM used within the UK is a 
mechanistic model based on the probability of a turbine blade occupying the same space as a bird flying 
through the turbine rotor swept volume (Band, 2012a, 2012b, 2000, Band et al. 2007). The probability of 
collision is predicted using the physical features (e.g. wingspan, body length), flight characteristics (e.g. 
speed, height) and behavioural traits (e.g. nocturnal activity, avoidance) of the bird, and the blade dimensions 
(e.g. width, length, pitch), structural properties (e.g. rotor speed, hub height) and operating schedule (e.g. 
activity) of the turbine.

Information on species’ flight height distributions is fundamental to estimating the collision risk of seabirds 
with offshore wind farms as part of the environmental impact assessment process (Largey et al. 2021, Masden 
et al. 2021). The original CRM (here after ‘basic Band model’) assumes a uniform distribution of flight heights 
across the rotor swept zone (RSZ) and requires single estimate of the proportion of birds at risk height 
(Band 2000, Band et al. 2007). In this case, flight height data can be collected and summarised at relatively 
coarse resolutions as the minimum information required is whether an individual is flying above or below 
two specific thresholds (i.e. the lower and upper limits of the RSZ, e.g. Lane et al. 2020). Collision risk can 
also be predicted using an extended version of the model (here after ‘extended Band model’) which expects 
continuous flight height distributions that quantify the relative frequency at 1 m height bands between  
0 m and 500 m  (Band 2012a, 2012b). The extended Band model generates more refined estimates of collision 
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mortality by accounting for variation in bird density with altitude (and therefore probability of collision) 
across the risk area but requires more detailed data collection from which vertical density distributions of 
flying birds can be produced (Johnston et al. 2014, 2023). A deterministic version of the Band model utilises 
point estimates of flight height distributions, whilst the more recent stochastic version incorporates variation 
based on bootstrapped sampling of each species’ flight height distribution (Caneco et al. 2022, McGregor et al. 
2018).

Robust estimates of collision risk require data from sampling methods that accurately describe the complete 
range of heights that a species can occupy and the frequency with which it does so. Flight height data can 
be collected using a variety of sampling methods (e.g. visual surveys, digital aerial surveys, animal-borne 
tracking devices, radar, LiDAR) with which a number of uncertainties (e.g. sampling error, measurement 
error) and logistical constraints (e.g. environmental conditions, species-specific) are associated (Largey et 
al. 2021, Searle et al. 2023, Thaxter et al. 2015). Seabird flight characteristics (e.g. location, speed, direction, 
height) additionally vary in response to environmental conditions (e.g. wind speed, temperature), animal 
behaviour (e.g. foraging, commuting, resting), individual-based traits (e.g. species, age, sex, breeding status) 
and in response to human activities (e.g. development, fishing) which creates considerable variation (spatial, 
temporal) that must be captured within the sampling process (Ainley et al. 2015, Lane et al. 2020, van Erp et al. 
2023). There is consequently substantial ambiguity over the reliability of estimated flight height distributions 
and predicted collision rates.

This review forms part of the ReSCUE (Reducing Seabird Collisions Using Evidence) project. This overarching 
project aims to provide confidence in flight height data, its use in impact assessments, and development of 
effective mitigation solutions by:

1.	 Reviewing and collating reliable sources of complementary seabird flight height data;

2.	 Providing confidence in survey methods and commissioning additional surveys to address knowledge 
gaps; 

3.	 Promoting access to data and facilitating the collection of new data to agreed standards;

4.	 Providing user-friendly tools and guidance for the interrogation and application of the collated data 
to facilitate speedy, reliable, impact assessments;

5.	 Examining what factors influence seabird flight height, vulnerability to collision, and requirements 
for mitigation;

6.	 Updating evidence for cumulative impact assessments based on improved evidence; and

7.	 Developing mitigation principles and guidelines to reduce impacts on vulnerable species and improve 
the consenting process. 

This review thus forms the first element of Objective (1) above, to build on existing reviews to appraise 
methods in relation to the collection of seabird flight height data. Subsequent work will propose best practice 
in relation to the collection and analysis of these data for use in impact assessments.

1.2. Conceptual foundations of flight height measurements and models

1.2.1. Vertical frame of reference
Measures of seabird flight height in the marine environment refer to the distance between a bird in flight and 
some measure of the sea surface. However, the sea surface height as experienced by marine birds relative to 
structures (e.g. wind turbines) which are generally fixed to the seabed, varies temporally (e.g. by day, month, 
year) and spatially (e.g. inshore, offshore) and experiences periodic extremes (i.e. tide). Sea surface height 
(SSH) is typically defined using standard terms to summarise the variation over one lunar nodal cycle (18.6 
years, Figure 1.1, Liibusk et al. 2020, Peng et al. 2019, Tamisiea et al. 2014). Mean sea level (MSL) is the average 
height of the sea surface over one cycle or in the absence of tides. Mean high water (MHW) and mean low 
water (MLW) are the average of all the daily high and low water levels observed over one cycle. Mean high 
water spring (MHWS) and mean low water spring (MLWS) are the average maximum and minimum heights 
when the tidal range is greatest (i.e. spring range). Mean high water neap (MHWN) and mean low water neap 
(MLWN) are correspondingly the average maximum and minimum heights when the tidal range is lowest (i.e. 
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neap range). The highest (HAT) and lowest astronomical tides (LAT) are the maximum and minimum heights 
that are predicted to occur under average meteorological conditions over one cycle. Some sampling methods 
(e.g. visual surveys, rangefinders, barometric altimetry) estimate flight height directly in relation to the sea 
surface (Harwood et al. 2018, Johnston et al. 2023) while others (e.g. GPS, aerial imagery) estimate flight 
altitude relative to constant reference values (e.g. MSL, Cook et al. 2018, Harwood et al. 2018, Johnston & Cook, 
2016, Johnston et al. 2023). Some methods (e.g. LiDAR) can estimate either flight height or flight altitude 
(Cook et al. 2018, Wicikowski et al. 2022). From a biological perspective flight height measurement should be 
(as close as possible) related to the instantaneous sea level, the resulting values can then be related to HAT.

Figure 1.1. Schematic plot of the relationship between measures of sea surface height (instantaneous — 
SSHIN,  satellite altimetry — SSHSA, tide gauge — SSHTG, GNSS  — SSHGNSS), two commonly used reference 
altitudes (mean sea level — MSL, a modelled geoid) and a wind turbine. The instantaneous sea level anomaly 
(i.e. difference between measured and reference value) is shown for each method (instantaneous — SLAIN,  
satellite altimetry — SLASA, tide gauge — SLATG, GNSS  — SLAGNSS). Measures of flight height (FH) refer 
to the distance between a flying bird and the instantaneous sea surface height while measures of flight 
altitude (FA) refer to the distance between a flying bird and a reference altitude. Turbine characteristics 
(e.g. RSZ, Air gap) are measured from the highest astronomical tide (HAT), the rotor swept zone (RSZ) 
refers to the area between the upper and lower limits of a turbines blades and the air gap refers to the 
distance between the RSZ and the HAT (Air gapHAT). Both the instantaneous air gap (Air gapIN) and the 
difference between this and the HAT value (Air gapSLA) are also shown. Additional abbreviations include: 
hsa - ellipsoidal height, N — geoid undulation, R — distance between the satellite and the sea surface,  
H — GNSS antenna height from the sea surface. At the tide gauge, the geoid undulation (N) approximately 
coincidences with the vertical datum zero N ≈ mean sea surface height above ellipsoid.

Flight altitudes are typically estimated relative to a geometrically perfect (i.e. ellipsoid) but simplistic model 
of MSL (e.g. World Geodetic System 1984, WGS84). They may alternatively be estimated relative to an irregular 
(i.e. geoid) model of MSL if it was only influenced by the local gravitational field and the rotation of the Earth 
(i.e. no effect of landmass, wind, or tide, e.g. OSGM15). Flight altitudes are also sometimes estimated relative 
to empirical measures of sea level as measured from a reference point over a reference period (e.g. Ordnance 
Datum Newlyn, defined as the MSL as recorded by the Newlyn Tidal Observatory between 1915 and 1921). 
Flight heights are converted to altitude using simultaneously observed or predicted values of SSH. There are 
many methods by which SSH (e.g. satellite altimetry, tide gauges, buoys) is routinely measured and data are 
available at a variety of spatial and temporal scales (Liibusk et al. 2020, Tamisiea et al. 2014).
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The height characteristics of wind turbines (e.g. RSZ, air-gap) are usually measured relative to the HAT (a 
precautionary approach that is relevant for the engineering specs of the infrastructure), but the structures 
are usually fixed to the seabed and the perceived height of structures by seabirds varies relative to SSH 
(Figure 1.1). The height of the collision risk area (i.e. RSZ) relative to the sea surface is therefore continually 
decreasing and increasing as the tide rises and falls, or relative to local wave/swell height. Depending on the 
extent of SSH variation in an area of interest, collision risk heights may therefore also need to be corrected 
using simultaneously observed or predicted values of SSH. This is currently achieved using a site-specific 
tidal offset between HAT and MSL. 

1.2.2.  Sources of error and uncertainty
Flight height data should ideally be species-specific and representative of all individual traits (e.g. age, sex, 
body size), behaviours (e.g. foraging, commuting, resting), annual cycle stages (i.e. breeding, non-breeding, 
migration) and environmental conditions (e.g. temperature, windspeed, precipitation, food) that can be 
encountered within the area of interest. Measurements should be free from bias, accurate and precise such 
that flight height distributions characterise the complete range of heights and the true frequency with which 
they occur. The types of error and uncertainty associated with seabird flight height estimates can be broadly 
grouped into sampling and measurement processes, respectively. Sampling error is generally systematic 
and emerges both in response to the experimental design (e.g. non-random sampling) and the method of 
data collection (e.g. sampling geometry, detection accuracy, detection probability). Measurement error 
refers to the precision of the height measurements obtained from detected birds (i.e. how repeatable the 
measurements of the same target are) and accuracy (i.e. how close the obtained measurement is to the true 
value) associated with each method. 

Data sampling methods (and associated error/uncertainty) can be grouped into two categories (Eulerian 
and Lagrangian) based on experimental design (Largey et al. 2021, Phillips et al. 2019, Watanuki et al. 
2016). Eulerian sampling methods (e.g. visual surveys, aerial imagery, LiDAR) collect observations in a 
predetermined spatial and temporal frame of reference (e.g. coordinates, transects). Lagrangian experimental 
design collects data at discrete spatial and temporal locations using animal-borne tracking devices. The 
primary difference between Eulerian and Lagrangian sampling is the level of inference each method can 
achieve about populations or individuals, respectively, and/or spatiotemporal domains of interest.

1.2.2.1.  Sampling error
There is considerable uncertainty associated with each method’s ability to adequately sample the population 
of interest and none of the methods discussed can provide species-specific flight height distributions that 
are fully representative of the populations (i.e. properties, constituents), environmental conditions (i.e. biotic, 
abiotic) and temporal scale (e.g. decades) they aim to describe.  

All Eulerian observation methods fundamentally sample a finite volume of airspace (hereafter ‘sampled 
volume’), and the maximum sampled volume is typically determined by sensor characteristics. Examples 
of the theoretically sampled volume for different methods and the associated variation in sampling error/
efficiency is provided (Figure 1.2). The sampled volume of aircraft-based surveys (i.e. aerial imagery, LiDAR) 
increases with increasing distance from the sensor due to the triangular vertical cross section of the 
surveyed volume, which is governed by the aperture angles of the employed cameras or LiDAR devices (Cook 
et al. 2018, Johnston & Cook 2016, Figure 1.2a). The sampled volume of radar-based approaches is constrained 
by the shape of the radar beam, the horizontal cross section of which generally increases with distance from 
the equipment (Schmid et al. 2019, Figures 1.2d and e). The sampled volume associated with human observer-
based methods (e.g. visual surveys, rangefinders) is often assumed to be uniform within certain distance 
limits but is generally not well understood (Figure 1.2c). 

Many Eulerian sampling methods are biased (positively and negatively) towards low altitudes due to challenges 
associated with observations close to the sea surface. During visual surveys, observers are just as likely to 
assign birds to the incorrect height band as to the correct band and routinely underestimate (i.e. positive 
observation bias) flight height (Harwood et al. 2018, Perrow et al. 2017). Rangefinders improve the accuracy at 
which observers estimate flight heights, but difficulties associated with targeting low (< 10 m) flying individuals 
can result in relatively few records ( i.e. negative observation bias; Borkenhagen et al. 2018). Both radar and 
LiDAR (when not paired with cameras) are prone to increased false-positive detection rates due to reflections 
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from waves or spray and consequently data below a threshold height (e.g. 2 m) have historically been routinely 
removed (Cook et al. 2018, van Erp et al. 2024). The result is a systematic over- or underestimation of flight 
height in certain altitude bands which consequently affects estimates of collision risk.

In addition to complex geometries of sampling volumes, the detection probability of each Eulerian method 
is generally not uniform across the respective sampled volumes and effective sampling rates are therefore 
variable. The detection probability of visual-based methods (e.g. visual survey, rangefinder, photogrammetry) 
decreases with increasing distance from the observer or sensor (i.e. negative observation bias) due to 
limitations associated with visibility, optical resolution and/or targeting individuals (Barbraud & Thiebot, 
2009, Borkenhagen et al. 2018, Harwood et al. 2018). The detection probability of radar and LiDAR-based 
approaches decreases with increasing distance (i.e. negative observation bias) because the energy of return 
signals becomes too low to detect (Dokter et al. 2013, May et al. 2017). The detection probability of sound-
based approaches (e.g. microphone array) also decreases with increasing distance from the sensor as sounds 
become too low to detect (Stepanian et al. 2016). The result is a systematic over- or under-estimation of flight 
height and collision risk.

Both the sampled volume and detection probability of each Eulerian method may also vary considerably 
(temporal and spatial) in response to environmental conditions. Sampling during poor weather and/or 
low light conditions remains particularly challenging due to impacts on the measurement process and/or 
deployment limitations of equipment (Largey et al. 2021). The sampled volume and detection probability of 
visual and imagery-based methods decreases with worsening weather conditions and interference from the 
sea surface and/or precipitation can similarly alter the effective sampled and detection probability volume of 
radar- and LiDAR-based systems. Detection probabilities are also fundamentally related to the size of birds, 
larger individuals can be detected at greater distances relative to smaller ones (Barbraud & Thiebot, 2009, 
Cook et al. 2018, Schmid et al. 2019).

Where digital data is collected in relatively large volumes (e.g. radar, imagery, LiDAR, animal-borne tracking 
device) many of the processing steps (e.g. detection, classification, tracking) are increasingly automated (e.g. 
image-processing algorithms, target-tracking algorithms, classification algorithms). While the algorithms 
must intermittently miss or reject true observations and accept false observations, the frequency with which 
it occurs is largely unknown (Urmy & Warren 2020). The detection probability of the various algorithms is 
also likely to vary in space (e.g. habitat, altitude) and time (e.g. weather, time of day), particularly in marine 
environments (e.g. waves, sea spray). The same uncertainties are also present where processes are not 
automated. There is for example a reliance on humans for the interpretation of images (e.g. target detection, 
species identification, matching imaged individuals with LiDAR points) and the accuracy with which such 
processes occur is not well understood.

1.2.2.2.  Measurement error
There is also considerable uncertainty surrounding the accuracy and precision with which each method 
measures flight height. All methods incorporate some degree of vertical error, often from multiple sources 
(e.g. equipment, operator, supplementary data) and at various stages (e.g. data collection, data analysis) 
of the sampling process. As the complexity of sampling methods increases, errors can arise and interact in 
increasingly complex and counterintuitive ways which further complicates all subsequent inferences.

Measurement errors that arise due to equipment characteristics (e.g. sensor accuracy, sampling frequency) 
are generally inherent to data collection and usually generate random noise around height estimates 
(Harwood et al. 2018, Lato et al. 2022). Those that result from human behaviour (e.g. height estimates) are 
also introduced during data collection and can introduce both random noise and systematic bias to height 
estimates (Harwood et al. 2018, Perrow et al. 2017). Errors that result from interactions between height 
measurements and supplementary data (e.g. sea level pressure, reference values) are introduced while data 
are processed and may introduce both random noise and systematic bias to height estimates (Boersch-
Supan et al. 2024, Johnston et al. 2023, Schaub et al. 2023). Increasingly complex sampling methods (e.g. 
animal-borne GPS, aerial imagery) can simultaneously incorporate multiple sources of error (e.g. device, 
supplementary data) which interact to alter (e.g. inflate variance, introduce bias, distort shape) flight height 
distributions (Boersch-Supan et al. 2024, Péron et al. 2020, Ross-Smith et al. 2016).
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Figure 1.2 Schema�c illustra�on of theore�cal sampling volume and associated varia�on in sampling efficiency with height 
above sea level (a.s.l) for a) aerial survey, b) forward looking camera, c) Human observer, d) Ver�cally rota�ng Radar and e) 
ver�cal radar beam. Scaterplots depict the sampled volume (cross sec�on) which varies in rela�on to the sensor / observer 
and is ploted with a) perfect and b) imperfect (decreasing with increasing distance from observers) detec�on of uniformly 
distributed points (i.e., birds). Histograms show the resul�ng sampling efficiency under d) perfect detec�on and e) imperfect 
detec�on. Grey points represent unsampled birds, red points represent all birds within the sampled volume and green points 
represent all detected birds within the sampled volume. Grey bars represent a simulated uniform distribu�on of birds across 
height, red bars show the apparent flight height distribu�on arising from not adjus�ng for the sampled volume and green 
bars show the distribu�on from not adjus�ng for sampled volume and a variable detec�on probability. 

Figure 1.2 Schematic illustration of theoretical sampling volume and associated variation in sampling 
efficiency with height above sea level (a.s.l.) for a) aerial survey, b) forward looking camera, c) human 
observer, d) vertically rotating radar and e) vertical radar beam. Scatterplots depict the sampled volume 
(cross section) which varies in relation to the sensor/observer and is plotted with a) perfect and b) 
imperfect (decreasing with increasing distance from observers) detection of uniformly distributed points 
(i.e. birds). Histograms show the resulting sampling efficiency under d) perfect detection and e) imperfect 
detection. Grey points represent unsampled birds, red points represent all birds within the sampled volume 
and green points represent all detected birds within the sampled volume. Grey bars represent a simulated 
uniform distribution of birds across height, red bars show the apparent flight height distribution arising 
from not adjusting for the sampled volume and green bars show the distribution from not adjusting for 
sampled volume and a variable detection probability.
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1.2.3.  Flight height distribution models and data integration
The uncertainties in the sampling and measurement processes discussed above interact to generate samples 
of flight height observations that do not faithfully represent the true distribution of flight heights. The latter 
therefore have to be reconstructed by means of statistical modelling. Models for flight height distributions 
have been proposed for about a decade, initially to synthesise flight height observation across multiple 
studies (Johnston et al. 2014) and subsequently to explicitly account for observation errors (Johnston & Cook, 
2016, Ross-Smith et al. 2016, Peron et al. 2017, Fleming et al. 2020, Davies et al. 2024). The latter is achieved 
using so-called state-space modelling frameworks which conceptually separate the biological process (i.e. 
the selection of flight heights by the bird) from the observation process (i.e. the sampling and measurement 
characteristics of the employed observation technology). This generally requires distributional assumptions 
about both the shape of the true flight height distribution (e.g. a log-Normal distribution (Ross-Smith et al. 
2016) or Gamma mixture (Johnston & Cook 2016)), and the nature of the sampling and measurement errors 
(e.g. Gaussian errors (Ross-Smith et al. 2016) or Student t errors (Peron et al. 2017)). While state-space models 
in principle allow the joint estimation of parameters for both the process and observation models, there are 
fundamental identifiability constraints (Auger-Methe et al. 2016), which can seriously limit the applicability of 
these models to real-world data. This is in particular the case when measurement errors are of a similar or 
larger magnitude as the variance of the flight height distribution – which is the case for several observation 
techniques such as low-frequency sampling GPS devices or aerial photogrammetry (e.g. Lato et al. 2022, 
Boersch-Supan et al. 2024). Error calibration of the observation technology and independent empirical 
validation of measurement error modelling approaches is therefore crucial to assessing whether or not 
robust biological inferences can be drawn for any particular dataset (Fleming et al. 2020, Boersch-Supan et al. 
2024).

Published state-space models for flight heights generally only consider a single observation process, i.e. a 
single observation technology. However, the state-space framework naturally expands beyond this to multiple 
observation processes, as the modular model structure in principle allows the specification of an observation 
model for each data input. Such modelling approaches, so-called model-based data integration, are rapidly 
gaining traction in other realms of ecological statistics to combine different data sources in a single 
statistical model (e.g. animal count, detection/non-detection, and presence-only data; Pacifici et al. 2017, Isaac 
et al. 2020, Mancini et al. 2022). We anticipate to adapt this approach to draw inferences about flight height 
distributions from multiple datasets in the course of the ReSCUE project.

1.3.  Aims and objectives
The overall aim of this document is to review existing methods for collecting seabird flight height data and 
their potential to produce flight height distributions that might be used in CRMs. The review aims to:

•	 Identify strengths, weaknesses, and limitations of different observation methods.

•	 Assess sources of measurement and sampling error, uncertainty, and bias for each method.

•	 Consider how data are best utilised to inform scientists, regulators, and stakeholders.

2. METHODS
2.1.  Literature review
The methods used to collect data on seabird flight heights have been previously reviewed in detail (Largey et 
al. 2021, Thaxter et al. 2015). For the purposes of this project the literature review was not systematic but, to 
ensure transparency and complete reporting, a general guide to the approach used is provided. The literature 
search considered sources published prior to April 2024 and was limited to sources that were accessible 
online and written in English. Web of Science, Google Scholar, Google Search, and the Tethys online database 
(www.tethys.pnnl.gov) were searched for reports, peer-reviewed publications, book chapters and theses. 
The primary search terms used were ‘seabird’, ‘bird’ or ‘avian’ in combination with ‘flight height’ and ‘flight 
altitude’. Particular attention was given to previous reviews of flight height data collection methods and the 
references therein (Largey et al. 2021, Thaxter et al. 2015). All studies were investigated for species-specific 
flight height estimates and information concerning the strengths, weaknesses, limitations, and sources of 
uncertainty associated with each sampling method was extracted.
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The results are organised by methodology with a brief description of how flight heights are estimated, 
the characteristics of each sampling design and the error (i.e. sampling, measurement) associated with 
each. Key analytical and operational considerations for each method are also described. The uncertainties, 
strengths and weaknesses are then broadly discussed in relation to estimating collision risk with offshore 
turbines before recommendations for best practice is provided and key knowledge gaps and research 
priorities are identified (summarised in Table 4.1). Data collection methods have previously been grouped 
into two categories (sensor, non-sensor, Largey et al. 2021). The authors considered sensor data to be those 
collected remotely using devices (e.g. LiDAR, radar, GPS) that transmit and/or receive signals from which flight 
parameters can be directly measured. Non-sensor data were considered those collected locally by observers 
(e.g. visual surveys) or devices (e.g. camera, microphone) which require flight parameters to be calculated 
post hoc with a degree of observer subjectivity. In the present report, this distinction becomes increasingly 
unclear as sensor technology is currently employed in one form or another in almost any approach. The 
distinction is therefore not used, and methods are discussed independently.

3.  RESULTS
3.1.  Visual surveys
Seabird flight heights have traditionally been collected via visual surveys which require trained observers 
to estimate the height of all birds within a set distance (e.g. < 300 m) of their location (e.g. vessel, vantage 
point) at predetermined (e.g. five minute) intervals (Camphuysen et al. 2004). Values are categorical (i.e. in 
height ‘bands’) and either set with reference to the height of fixed objects (e.g. vessel mast, turbine) or to 
standardised categories (e.g. Larsen & Guillemette, 2007, Leemans et al. 2022, McClure et al. 2021, Mendel et al. 
2014, Rothery et al. 2009, van Bemmelen et al. 2022).

Sampling characteristics
Visual surveys generally follow a Eulerian experimental design in which observations are taken at 
predetermined locations within the area of interest (e.g. transects, vantage points, Table 4.1). Some 
approaches combine aspects of both Eulerian and Lagrangian methods by tracking individuals from either 
vessels or platforms to reconstruct movement tracks (Akeresola et al. 2024, Perrow et al. 2017, 2011). Sample 
sizes are generally moderate, and data can be collected for multiple species simultaneously. Visual surveys 
are positively biased towards mild (e.g. calm, dry, good visibility) weather conditions and daylight hours, they 
are non-invasive but the survey platform can induce behavioural responses (e.g. attraction, displacement) 
which typically introduce negative observation bias within flight height estimates (Borberg et al. 2005, 
Jarrett et al. 2021, Schwemmer et al. 2011). 

The volume of air sampled via visual surveys is assumed to be a hemisphere in shape with a radius of 
approximately < 300 m from the observer (Figure 3.1). In practice the shape and size of the sampled volume 
is poorly understood. The use of trained and experienced observers results in most available individuals 
being uniformly detected and correctly identified to species level at horizontal distances < 100 m. Detection 
probability decreases with increasing distance from observers, bird size and wave height but increases with 
the number of observers (Barbraud & Thiebot 2009, Ronconi & Burger 2009, Spear et al. 2004). Detection 
probabilities at distances < 300 m for example, are reported to be 0.87, 0.73 and 0.69 for large (2—11 kg), 
medium (0.5—1.5 kg) and small (< 0.5 kg) birds respectively (Barbraud & Thiebot 2009). Additional studies 
demonstrate that between 20 and 80% of pursuit diving birds can be detected within a 300 m wide transect 
(150 m on either side of the vessel, Ronconi & Burger 2009). Methods to optimise the survey area (e.g. strip 
width) and analytical approaches such as distance sampling aim to correct for detection biases within two-
dimensional surveys (Hyrenbach et al. 2007, Ronconi & Burger 2009). Equivalent concepts and methods are 
currently lacking for three-dimensional data collection and the effective sample volume for visual surveys is 
therefore generally unknown. 
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Figure 3.1. Schematic illustration of theoretical sampling volume and associated variation in sampling 
efficiency with height above sea level (a.s.l.) for observed-based sampling methods. Scatterplots depict 
the sampled volume (cross section) which is assumed to be uniform < 300 m from observers and is plotted 
with a) perfect and b) imperfect (decreasing with increasing distance from observers) detection of 
uniformly distributed points (i.e. birds). Histograms show the resulting sampling efficiency under d) perfect 
detection and e) imperfect detection. Grey points represent unsampled birds, red points represent all birds 
within the sampled volume and green points represent all detected birds within the sampled volume. Grey 
bars represent a simulated uniform distribution of birds across height, red bars show the apparent flight 
height distribution arising from not adjusting for the sampled volume and green bars show the distribution 
from not adjusting for sampled volume and a variable detection probability.

Measurement characteristics
Observers typically calibrate flight height estimates with reference to the height of fixed objects (e.g. a ship’s 
mast) but few studies have assessed the accuracy at which seabird flight heights are estimated using visual 
surveys. Estimates from visual surveys have however been compared with those from laser rangefinders 
(Harwood et al. 2018, Perrow et al. 2017).  

Comparisons of estimates made using visual surveys and laser rangefinders found observers assign birds to 
the correct height band 30—58% of the time and differences (50—86%) among bird groups indicate species-
specific drivers of measurement error (Harwood et al. 2018, Perrow et al. 2017, Thaxter et al. 2015). Observers 
assigned birds to either the same or adjacent 5 m band 92—96% of the time but routinely underestimated 
flight heights, particularly at greater heights (Harwood et al. 2018, Perrow et al. 2017). Visual surveys 
therefore likely overestimate the proportions of birds flying at low altitudes (i.e. positive observation bias) 
and underestimate those numbers flying at greater altitudes (i.e. negative observation bias).

Analytical considerations 
Visual surveys estimate flight heights relative to the in situ sea surface and values must be converted to 
MSL for use in CRMs using simultaneous observations or predictions of SSH (i.e. instantaneous sea level 
anomaly). The effectively sampled volume is not well understood for human observers. Detection of all 
available individuals is generally assumed, but there is little evidence whether this assumption is fulfilled 
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with respect to both horizontal and vertical distance (i.e. altitude) from the transect. Horizontal detection 
probabilities have been estimated using conventional distance sampling methods and these findings suggest 
that detection probabilities are near one within 100 m of the transect but decline beyond (Barbraud & Thiebot 
2009, Ronconi & Burger 2009). However, the adequacy of conventional distance sampling analysis has been 
questioned for shipboard seabird surveys (and other stationary or slow-moving platforms that sample moving 
animals; Glennie et al. 2015, 2021). To our knowledge, there is no well-established statistical method to analyse 
data where the detection probability varies in both horizontal and vertical direction, although initial work on 
related problems (e.g. fisheries acoustics) can be found in the statistical literature (Cox et al. 2011, Borchers & 
Cox 2017). 

Flight height distributions collected via visual surveys are categorical (i.e. assigned to fixed height bands) 
and are therefore most easily applied to the basic Band model, assuming survey height bands align with 
the RSZ. Depending on the vertical resolution of survey height bands, confidence intervals for flight height 
distributions and/or the proportion of birds at risk can be challenging to calculate, as are inferences about 
continuous, flight height distributions (Cook et al. 2012, Johnston et al. 2014). The combination of survey data 
from different studies can help in this case, particularly when height band categories vary across studies 
but may be less informative about underlying continuous distributions where height bands are uniform 
throughout (Johnston et al. 2014).

Operational considerations
Visual surveys are conducted both from moving platforms (typically surface vessels) and stationary vantage 
points, and can be deployed at various spatial (e.g. local, regional, national) and temporal (e.g. days, weeks, 
months) scales. The protocols for estimating seabird flight heights using visual surveys are well established 
and can therefore be implemented in relatively short times (Camphuysen et al. 2004, Tasker et al. 1984). Visual 
surveys can take place pre-, intra-, and post-construction of wind farms, they have no long-term maintenance 
requirements but are restricted to fine weather and daylight hours. Species-specific data can be collected 
for multiple species simultaneously and additional behavioural (e.g. foraging, commuting), environmental 
(i.e. biotic, abiotic) but limited individual-based (e.g. sex) data can be simultaneously collected. Their cost 
incorporates the requirements of observers (e.g. training, safety, living), their equipment (e.g. optics, Personal 
Protective Equipment — PPE) and the survey vehicle (e.g. fuel, crew), which can be considerable.

3.2.  Rangefinders
Rangefinders refer to methods that require observers to visually identify and track individual birds using 
optical instruments, while flight height is formally estimated using sensor-based (e.g. laser, compass, GPS, 
inclinometer) measurements (e.g. elevation angle, distance, bearing/azimuth) and basic mathematical 
principles (e.g. trigonometry). Laser rangefinders typically estimate the slope distance and degree of 
inclination (elevation angle) to specified targets (e.g. birds) using a laser beam (e.g. Borkenhagen et al. 2018, 
Fijn & Collier 2022, Harwood et al. 2018, Leemans et al. 2022). The estimated values are then used to calculate 
the horizontal and vertical distance, and if paired with a compass or high-resolution GPS, a three-dimensional 
(i.e. x, y, z) position or track (e.g. Harwood et al. 2018, Borkenhagen et al. 2018, Perrow et al. 2017). When 
paired with a compass and clock, laser rangefinders are sometimes referred to as ornithodolites (Pennycuick 
1982, Pennycuick et al. 2013). Ornithodolites incorporate a measure of azimuth and can provide additional 
estimates of flight speed (Cole et al. 2019, Largey 2020). There are many different types of rangefinders and 
the capability (e.g. accuracy, precision, range) and cost of each can vary considerably. 

Sampling characteristics
Rangefinders generally follow a Eulerian experimental design in which observations are taken at 
predetermined locations within the area of interest (e.g. transects, vantage points, Table 4.1). As with visual 
surveys, animals can be tracked (i.e. Eulerian/Lagrangian) to reconstruct movement tracks (e.g. Cole et al. 
2019, Perrow et al. 2017). Rangefinders can theoretically measure flight height at distances of up to 12 km but, 
as with visual surveys, observers may only reliably detect and correctly identify individuals to species level 
at distances < 100 m and detection probability decreases with distance and bird size (Barbraud & Thiebot 
2009). Sample sizes are generally moderate (100s to 1000s), and data can be collected for multiple species 
simultaneously (Borkenhagen et al. 2018, Harwood et al. 2018, Skov et al. 2018).  Laser rangefinder surveys are 
positively biased towards mild (e.g. calm, dry, good visibility) weather conditions and daylight hours, they are 
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non-invasive but the survey platform can induce behavioural responses (e.g. attraction, displacement) which 
introduce observation bias within flight height estimates (Jarrett et al. 2021, Schwemmer et al. 2011). 

As with visual surveys, the volume of air sampled via rangefinders is assumed to be a hemisphere in shape, 
but the size is poorly understood (Figure 3.1). The detection process for rangefinders is composed of two 
steps, the observer must first visually detect a target before locking the measurement mechanism onto it. 
Visual detection is not considered a problem within 300 m of an observer but measuring the height of an 
unmanned aerial vehicle (UAV) (dimensions — 88.7 × 88.0 × 37.8 cm) was reported to be difficult at distances 
> 100 m and altitudes > 75 m using a rangefinder due to difficulties locking onto the target (Harwood et al. 
2018). The probability of successfully locking onto targets is positively related to the size of individual birds 
and varies depending on the angle of view, the orientation (e.g. broadside) and behaviour (e.g. flapping, 
gliding) of the target individual, and additional environmental factors (e.g. background composition, 
atmospheric moisture content, physical structures). Flight height data collected via rangefinders are 
therefore likely to be negatively bias towards more distant or smaller individuals (Borkenhagen et al. 2018, 
Cole et al. 2019, Harwood et al. 2018, Kahlert et al. 2012). 

Measurement characteristics
Estimates from laser rangefinders have been compared with those from UAVs, barometric altimetry, GPS 
triangulation and known reference points (Borkenhagen et al. 2018, Harwood et al. 2018, Largey, 2020, Prinsloo 
et al. 2021, Skov et al. 2018).  

The accuracy and precision of a laser rangefinder (Forestry Pro, Nikon, Tokyo, Japan) was evaluated by 
comparing estimates with those from a M200 quadcopter (DJI, Shenzhen, China, Harwood et al. 2018). 
Overall accuracy (mean error ± standard deviation) was < 1 m (n = 407, -0.4 m ± 1.3) and improved (-0.04 m 
± 0.7) when comparisons were limited to a maximum distance and altitude of 100 m and 50 m, respectively. 
Accuracy was found to vary nonlinearly in relation to height and distance suggesting additional factors 
contribute to variability in rangefinder accuracy. Precision (judged by the modelled confidence intervals) 
declined with increasing height but varied with distance. 

The accuracy of an ornithodolite (based on Vectronix Vector 21 Aero) was assessed by comparing estimates 
with those from stationary objects (building and turbine) and a UAV (DJI Phantom 4) piloted at variable 
heights (10—120 m) and distances (50—300 m, Largey 2020). Accuracy decreased with increasing distance 
during stationary (distance = 50 m, mean error range = 0—2 m; distance = 5,000 m, mean error range 
= -2—6 m) tests. The accuracy of the ornithodolite also decreased with increasing height during mobile tests 
but did so at greater rates for smaller distances.

The precision of an ornithodolite (Vectronix USMC Vector 21) was assessed by examining the standard 
deviation of estimates from a stationary object measured at variable distances (50 m to 5 km, Cole et al. 
2019). The study also examined how the maximum measurable distance varied in relation to body size by 
measuring the distance to in flight birds (n = 4200, species = 151). The precision of measurements increased 
with distance and was approximately 1−2 m at distances < 2 km. The maximum measurable distance increased 
with bird body mass. 

Flight heights of Lesser Black-backed Gulls were estimated using a laser rangefinder (Vector 21 Aero) and 
compared with those recorded using animal-borne GPS devices (Borkenhagen et al. 2018). The flight height 
distribution obtained via the rangefinder (n = 1,785, max = 431 m, median = 21 m, min = -2 m) was less variable 
compared to the animal-borne GPS devices (n = 705, max = 735 m, median = 8 m, min = -10 m) and resulted 
in a greater proportion of values in the collision risk zone (rangefinder: 70.0% < 30 m, 29.6% 30 – 150 m and 
0.4% > 150 m; GPS devices: 59.3% < 30 m, 17.0% 30—150 m and 5.7% > 150 m).

Rangefinders (Vectronix 21 Aero) were calibrated by measuring the distance to known reference points during 
a bird collision and avoidance study, accuracy was considered ± 10 m (Skov et al. 2018). 

Analytical considerations
Rangefinders estimate flight height relative to the sea surface and values must be converted to MSL using 
simultaneous observations or predictions of SSH. The surveyed volume and detection probabilities have not 
been quantified. Laser rangefinders generally provide more detailed data (i.e. continuous height and distance 
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estimates) than visual surveys and are therefore in principle better able to be used for the estimation of 
continuous flight height distributions, which can be directly input into both the basic and extended Band 
models. The underlying distribution and associated confidence intervals can also, in principle, be statistically 
modelled but no examples could be found during this review. However, the same caveats about decreasing 
detection probabilities with distance from transect and/or altitude apply. Rangefinder data are more similar 
to sensor data that have been modelled using 3D distance sampling in other contexts (e.g. fisheries acoustics, 
Cox et al. 2011), however, in addition to the concerns raised about the adequacy of conventional distance 
sampling methods for visual observer data above, the two step detection process for rangefinders adds 
additional analytical challenges, as target-locking occurs with a lag to the initial detection, thereby violating 
another key assumption of conventional distance sampling models (Glennie et al. 2015).

Operational considerations
Rangefinder surveys are deployed both from moving platforms (typically surface vessels) and stationary 
vantage points. Sampling can take place at various spatial (e.g. local, regional, national) and temporal 
(e.g. days, weeks, months) scales but surveys are restricted to fine weather and daylight hours. Species-
specific data can be collected for multiple species simultaneously and additional behavioural (e.g. 
foraging, commuting), environmental (i.e. biotic, abiotic) but limited individual-based (e.g. sex) data 
can be simultaneously collected. Sampling can occur pre-, intra-, and post-construction of wind farms 
but rangefinders ideally require a stable platform of known height from which they must be calibrated. 
Measurements can be influenced by metal structures and atmospheric conditions. High specification devices 
will automatically store measurements internally (e.g. using a memory card) or can be connected (e.g. by 
cable, Bluetooth) to external devices for further analysis but low specification units tend to not have this 
capability. Handheld units need to be kept vertical to ensure the clinometer functions correctly. This is 
difficult in practice and could be a source of additional error.

3.3. Single-camera photogrammetry (aerial imagery)
The use of digital aerial surveys (still photographs and video) to collect data on seabird flight height is 
relatively new (Forster et al. 2024, Humphries et al. 2023, Johnston & Cook 2016, Srinivasan et al. 2022). The 
aircraft first transects the survey area using cameras to collect data before all individual birds in the images 
or videos are identified to species and their flight height estimated. For still photographs or video stills, flight 
height estimates assume that the size of the bird is directly proportional to the distance from the camera 
lens. The size the imaged bird would be at sea level is first estimated using species-specific reference sizes 
and the ground sampling distance (GSD; i.e. pixel resolution in ground distance units) of the camera. The 
GSD varies with distance from the camera and flight height is estimated by scaling the height of the plane 
(as estimated via the vehicles Inertial Measurement Unit, IMU) using the ratio between the mean reference 
bird size at sea level and size in the image. This approach is highly sensitive to natural body size variation 
in seabirds, and it remains to be demonstrated that it is in fact capable of achieving satisfactory levels of 
accuracy and precision given the large intraspecific body size variation in many seabird taxa (Boersch-Supan 
et al. 2024). Alternative approaches for video footage have estimated the flight height of individual birds by 
comparing the speed at which the bird passes the plane to the speed of the sea surface. This is calculated 
for each successive pair of video frames that contain an individual bird and the mean height across each 
pair is used as the estimate (Cook et al. 2016). However, methodological details of this approach, and hence 
measurement characteristics, are unclear.

Sampling characteristics
Digital aerial surveys follow a Eulerian sampling design whereby the cameras are fitted to aircraft which 
follow predetermined transects (constant ground speed) within the area of interest (Table 4.1). Aerial 
surveys are non-invasive, and aircraft are piloted at altitudes (e.g. 350—600 m) are thought to minimise 
disturbance (Thaxter & Burton 2009). Threshold disturbance values however originate from abundance 
estimates (i.e. counts) and are based on whether birds at the sea surface are prompted into flight. Relatively 
small movements (e.g. 10 m) in response to aircraft may considerably alter flight height distributions but 
no information could be found regarding the three-dimensional response of birds in flight to low flying 
aircraft. Values also represent the maximum distance that birds can be from the aircraft (i.e. sea surface) but 
individuals in flight will be closer. Aircraft are fast moving observation platforms, allowing for near-synoptic 
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coverage of large areas while generating moderate sample sizes (100s to 1,000s). Flights are biased towards 
clement (e.g. calm, dry, good visibility) weather conditions and daylight hours (unless infra-red capable which 
limits species identification). 

The sampled volume of aerial imagery increases with distance from the aircraft due to the pyramidal view 
from the lens and birds at high altitudes are therefore less likely to be observed (i.e. negative observation 
bias, Figure 1.2). Observed flight height distributions therefore must be reweighted according to the geometry 
of the sampled volume but it is unclear whether this is routinely done. Variation in the aircrafts flight altitude 
should also be incorporated when determining sample volume but the extent to which altitude varies is not 
clear (Certain & Bretagnolle 2008). Disturbance effects are also likely to decrease with increasing distance 
from the aircraft but fine-scale three-dimensional responses of birds in flight to aircraft is poorly understood. 
Aerial surveys are thought to achieve near complete detection of medium to large-bodied seabirds and 
can identify most individuals to species level (Buckland et al. 2012). However, up to 35% of imaged birds 
were discarded prior to analysis in a recent study because their posture precluded accurate body size 
determination (Humphries et al. 2023), and it remains to be demonstrated whether this removal of detected 
birds is random with respect to flight height (Boersch-Supan et al. 2024). Paired LiDAR/DAS surveys would be 
suitable to assess whether this is a significant issue.

Figure 3.2 Schematic illustration of theoretical sampling volume and associated variation in sampling 
efficiency with height above sea level (a.s.l.) for aircraft-based sampling methods. Scatterplots depict 
the sampled volume (cross section) which increases with distance from the sensor and is plotted with 
a) perfect and b) imperfect (decreasing with increasing distance from observers) detection of uniformly 
distributed points (i.e. birds). Histograms show the resulting sampling efficiency under d) perfect 
detection and e) imperfect detection. Grey points represent unsampled birds, red points represent all birds 
within the sampled volume and green points represent all detected birds within the sampled volume. Grey 
bars represent a simulated uniform distribution of birds across height, red bars show the apparent flight 
height distribution arising from not adjusting for the sampled volume and green bars show the distribution 
from not adjusting for sampled volume and a variable detection probability.
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Measurement characteristics
The accuracy and precision of flight heights obtained via digital aerial surveys have not been fully validated. 
Humphries et al. (2023) present validation against uncertainty caused by aircraft altitude variation  
and/or pixelation. However, they failed to recognise that the large natural intra-specific variation in seabird 
body size (e.g. sex) creates a fundamental challenge when estimating flight heights using single-camera 
aerial imagery (Boersch-Supan et al. 2024, Humphries et al. 2023). Every imaged bird that is smaller than 
the reference individual will be assigned a negatively biased flight height as it appears to be further away 
from the camera. Likewise, for larger birds there will be a positive bias in the estimated height, and hence 
estimated flight height distributions based on mean reference body sizes are much more dispersed than 
the true underlying distributions. In practice, the uncertainty about individual flight heights caused by 
natural body size variation is much larger than any other error source (i.e. uncertainty about apparent 
body size because of pixelation, or uncertainty about aircraft height and/or attitude). This error has not 
been quantified experimentally, but the theoretical impact of body size uncertainty has been assessed via 
simulations (Boersch-Supan et al. 2024). Measurement error increased with body size variation (expressed 
as the coefficient of variation, CV) to values > ± 50 m when species identity was known and > ± 200 m when 
birds were classified as unknown gulls. Forster et al. (2024) present a revision of the approach proposed 
by Humphries et al. (2023). The revised methodology provides reduced errors in survey-level mean flight 
heights but is not able to deliver individual-level flight height estimates, therefore severely reducing the 
ability to draw direct inferences about collision risk. Instead of using individual-level flight height estimates 
they propose an indirect modelling approach which uses survey-level mean flight heights combined with 
strong assumptions about the underlying flight height distribution to estimate collision risk. This revised 
approach is yet to be independently validated, as for potential sampling errors created by the exclusion of 
birds in certain postures, paired LiDAR/DAS surveys may be able to shed further light on the feasibility and 
robustness of this analysis approach.

Analytical considerations
Aerial imagery estimates flight height relative to the altitude of the aircraft which is estimated via GPS. 
Flight heights are therefore estimated in relation to a reference MSL and may need conversion before use in 
CRMs. The theoretical surveyed volume can be estimated using camera specifications and aircraft position 
(e.g. longitude, latitude, altitude). The detection probability of aerial imagery is currently not quantified but 
thought to be near perfect for many seabird taxa (but not all, detection probabilities are likely to be smaller 
than 1 for small and/or dark coloured species such as European Storm Petrels (Hydrobates pelagicus) or small 
shearwaters (Baker et al. 2022, Certain & Bretagnolle 2008). Aerial imagery generates continuous flight height 
distributions which can be input directly into both the basic and extended Band models. Confidence intervals 
can be calculated manually for still images by examining potential uncertainty in the size of imaged birds or 
known variation in reference values. Confidence intervals are calculated for video images by bootstrapping 
different pairs of frames and calculating a new mean for each sample. The underlying distribution can, in 
principle, be statistically modelled to account for measurement error, although it is questionable whether 
existing measurement error models (e.g. Johnston & Cook 2016) are robust in the face of the magnitude of 
measurement errors associated with this observation approach.

Operational considerations
Digital aerial surveys are well suited to cover large spatial areas near-synoptically and can be used  
pre-, intra-, and post-construction of wind farms or far offshore where the use of other methods may not 
be feasible. They are however restricted to higher altitudes where aircraft operate over wind farms due 
to safety regulations. The subsequent change to sampling characteristics (e.g. ground sampling distance, 
identification rates, sample volume, detection probability) needs to be carefully considered for any pre—post 
construction comparison survey work. Surveys are restricted to fine weather and daylight hours; the data are 
species-specific and can be collected for multiple species simultaneously. Additional, but limited, behavioural 
data (e.g. flight speed) are embedded in the images or videos, but no environmental data or individual 
characteristics can be simultaneously collected. 
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3.4.  Stereophotogrammetry
Stereophotogrammetry is used to estimate three-dimensional coordinates of points within photographic 
images (still or video). It involves two or more cameras setup at known positions (e.g. altitude, latitude, 
longitude) so that multiple overlapping images can be recorded simultaneously. The directional angle 
(horizontal and vertical) of each camera lens is used to determine the three-dimensional location (i.e. 
triangulation) of points within the images. The technique was initially developed for topographical mapping 
but is now regularly used to measure and analyse three-dimensional structure within many ecosystem 
types (e.g. riparian, forests, dunes, biogenic reefs) and at a variety of spatial scales (Pulido Mantas et al. 
2023). Stereophotogrammetry and/or imagery-based ornithodolites have been successfully used to create 
three-dimensional tracks of animal movement and there are multiple commercial systems and software (e.g. 
IdentiFlight, Bioseco, spoor.ai, ORJIP, 2022) that are currently in operation or development within terrestrial 
and offshore wind farms in relation to bird collisions (de Margerie et al. 2015, Evangelista et al. 2017, Ling et al. 
2018). The method is therefore in principle suitable for collecting flight heights of birds (Prinsloo et al. 2021).  

Sampling characteristics
Stereophotogrammetry uses a Eulerian experimental design whereby areas of interest can be continuously 
(i.e. 24 h d-1) monitored from predetermined locations (Table 4.1). Flight heights are species-specific 
and depending on the instrumentation used, the approach may be restricted to clement (e.g. calm, dry, 
good visibility) weather conditions and daylight hours (unless infra-red capable). Equipment can be 
manually, or motion activated, and sample sizes will vary depending on the survey location and duration. 
Stereophotogrammetry is not invasive but the structures on which cameras are mounted may induce 
behavioural responses (e.g. attract) and create negative bias within flight height estimates.

Both the sampled volume and detection probability of stereophotogrammetry depends on the cameras (e.g. 
focal length, angle of view), the system setup (e.g. distance between cameras, pointing angle of cameras) and 
atmospheric conditions (Figure 3.3). Few data are available describing sampling characteristics, but birds can 
in principle be detected at distances of several hundred meters or more (e.g. Duerr et al. 2023, Linder et al. 
2022, Rolek et al. 2022). 

Measurement characteristics
Although, under ideal conditions, stereophotogrammetry can achieve 3D track reconstructions with cm-scale 
accuracy and precision, even for fast moving birds of prey (Brighton et al. 2022, 2017, Prinsloo et al. 2021), 
performance in typical monitoring applications is more variable and strongly depends on technical aspects 
of both the employed cameras and analytical workflows. There are several potential sources of measurement 
error associated with stereophotogrammetry. Pointing errors in direction from the attitude (i.e. pitch, roll, 
heading) sensor contribute to position error as a function of distance with greater range to target leading to 
larger errors. Stereo pair-based errors result from choosing slightly different points in the images and/or lack 
of perfect temporal synchronisation between image pairs which leads to an incorrect disparity measurement. 
The precision of the estimated range is proportional to the baseline (distance between cameras) which 
directly affects how this error is propagated through to the final measurement. A larger baseline reduces 
positioning error but also increases the minimum operating distance before a target is within the stereo 
overlap area. Sequential flight heights of moving individual birds are additionally likely to be temporally 
autocorrelated (Prinsloo et al. 2021).

The accuracy and precision of stereo and video photogrammetry was assessed by comparing values with 
those from stationary locations (e.g. structures, targets), moving objects (e.g. ball), UAVs and rangefinders 
(Clausen et al. 2023, de Margerie et al. 2015, Prinsloo et al. 2021).

The accuracy (mean height m ± standard error) of stereophotogrammetry was assessed by measuring the 
height of known structures and comparing values with those from laser rangefinders (Prinsloo et al. 2021). 
Precision (mean standard deviation ± standard error) was assessed using the standard deviation from 
estimated bird flight heights. There was no statistically significant difference between stereophotogrammetry 
and laser rangefinders when measuring three static structures with mean estimated heights generally within 
< 1 m between different methods at distances up to approximately 200 m. Photogrammetrically measured 
flight heights (n = 316) were precise to 0.07 ± 0.05 m up to 275 m, within 1 m at 400 m and measurable up to 
535 m.

BTO Research Report 780 23



The position accuracy (relative distance error, RDE) of an anti-collision system (Bioseco) was tested by 
comparing values (distance) with those from UAVs (1.5 and 2.0 m wingspan) and rangefinders (Clausen et al. 
2023). A RDE of approximately 10% (UAV flight 1 = 13%, UAV flight 2 = 9%, UAV flight 3 = 11%) was determined 
for a maximum range of 530 m.

The three-dimensional accuracy (RMS) of stereo videography was assessed by comparing values with 
stationary (flags: 30, 50, 70, 90, 110 m) and moving points (tennis ball: 0, 40, 60, 80, 100, 120 m) at known 
distances (de Margerie et al. 2015). Spatial uncertainty was observed to be < 1 m within 300 m of the observer 
and < 0.1 m within 100 m of the observer (de Margerie et al. 2015).

Figure 3.3 Schematic illustration of theoretical sampling volume and associated variation in sampling 
efficiency with height above sea level (a.s.l.) for horizontal camera-based sampling methods. Scatterplots 
depict the sampled volume (cross section) which increases with distance from the sensor and is plotted 
with a) perfect and b) imperfect (decreasing with increasing distance from observers) detection of 
uniformly distributed points (i.e. birds). Histograms show the resulting sampling efficiency under d) perfect 
detection and e) imperfect detection. Grey points represent unsampled birds, red points represent all birds 
within the sampled volume and green points represent all detected birds within the sampled volume. Grey 
bars represent a simulated uniform distribution of birds across height, red bars show the apparent flight 
height distribution arising from not adjusting for the sampled volume and green bars show the distribution 
from not adjusting for sampled volume and a variable detection probability.

Analytical considerations
Stereophotogrammetry estimates flight height relative to the position of cameras which is provided by GPS. 
Flight heights are therefore estimated relative to a reference MSL and may require conversion for use in 
CRMs. Flight height distributions collected via stereophotogrammetry are continuous and therefore derived 
distributions can be applied to both the basic and extended Band models. The underlying distribution and 
associated confidence intervals may also be statistically modelled but no examples could be found during the 
present review. High-precision 3D reconstructions of bird flight trajectories (e.g. Brighton et al. 2022, Prinsloo 
et al. 2021) typically involve manual or semi-manual image processing, this prevents scalability of this method 
to long-term monitoring. However increasingly automated image analysis is used in this context, but the 
performance of such analysis pipelines is less well understood.
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Operational considerations
Stereo- or multi-camera systems are currently mostly used to provide continuous monitoring at fixed 
locations. Cameras require structures on which they can be mounted and are therefore restricted to intra- 
and post-construction, all equipment requires maintenance (hardware and software) while in operation and 
there are considerable post-processing requirements (i.e. image analysis). Stereophotogrammetry collects 
species-specific data and can do so for multiple species simultaneously. Data collection is restricted to 
clement weather and daylight hours. Additional behavioural data are embedded in the images or video and 
environmental data loggers can potentially be installed alongside cameras.

3.5. Microphone array
Microphone arrays are increasingly employed to quantify the three-dimensional position and movement 
of sound producing animals (Dutilleux et al. 2023, Rhinehart et al. 2020). Multiple time-synchronised 
microphones (i.e. array) are deployed from which the animals locations is determined by quantifying the 
time delay of the sounds arrival (Dutilleux et al. 2023). The method has been used to track the movements 
of animals in flight (e.g. birds, bats) and can therefore potentially be used to document the flight heights 
of seabirds and/or nocturnally migrating land birds at offshore installations (Dutilleux et al. 2023, Gayk & 
Mennill, 2020, Stepanian et al. 2016, Suryan et al. 2016).

Sampling characteristics
Microphone arrays monitor from fixed and predetermined locations thereby following a Eulerian sampling 
design (Table 4.1). They can continually (i.e. 24 h d-1) monitor the surrounding airspace and identify multiple 
individuals to species level simultaneously. Microphone arrays are non-invasive but the structures on which 
microphones are mounted may induce behavioural responses (e.g. attract) and negatively bias flight heights. 
Sample sizes will vary depending on the location, duration, and time of year.

The sampled volume of microphone arrays is theoretically complex depending on the capabilities, direction, 
and number of microphones in the array. Microphone arrays will only detect birds that are actively producing 
sound while in flight. This limits the approach to certain taxa, and periods at which individuals are actively 
calling (e.g. migration). The detection probability decreases with distance from the equipment as sound 
becomes too low to detect. Detection distance was assessed using a kite fitted with GPS and speakers from 
which sounds were transmitted (Stepanian et al. 2016). The array could reliably detect calls < 90 m above 
ground level before the signal extinguished into the ambient noise. Detection probability will therefore also 
depend on the characteristics (e.g. pitch, volume, tone) of sounds and the sampling volume will likely be 
species-specific. Microphones are also prone to false positive observations in the direction of background 
noise (e.g. insects, leaves, water, wind) but this may be minimised by mounting microphones in parabolic 
containers (Dutilleux et al. 2023, 2023, Gayk & Mennill 2020, Stepanian et al. 2016). 

Measurement characteristics
The location of each microphone is determined via GPS devices and the associated measurement error 
(horizontal and vertical) will be introduced into flights height values. The accuracy and precision of 
microphone arrays has been assessed by comparing values to those of stationary (e.g. mounted speakers) 
and moving targets (e.g. kite lofted GPS with speakers (Gayk & Mennill 2020, Stepanian et al. 2016).

The accuracy and precision of a microphone array (six microphones fixed to three poles) was assessed by 
comparing values (mean difference) to those of a kite fitted with a GPS and speakers from which bird calls 
were transmitted (Stepanian et al. 2016). The maximum horizontal and vertical distances from the centre of 
the microphone array to the kite were 105 and 140 m, respectively. Vertical accuracy was found to be ± 5 m 
and ± 10 m for 60.1% and 80.4% of observations respectively, values were consistently underestimated.

The accuracy and precision of a microphone array (eight microphones fixed to four poles) was assessed by 
comparing values (mean difference ± standard error) to those of a stationary speaker mounted 10 m off the 
ground toward the centre of the array (Gayk & Mennill 2020). The speaker played test tones and flight calls for 
which mean location accuracy was 1.52 ± 0.34 m and 2.04 m ± 0.37 m, respectively.
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Analytical considerations
The survey volume and detection probability of microphone arrays is unreported for many studies but will 
likely depend on the species and be influenced by environmental conditions. Distance sampling approaches 
are available in principle for such data (Marques et al. 2013, Pérez-Granados & Traba, 2021), but similar caveats 
about variable detectability in three dimensions, as raised in the visual observations section theoretically 
apply. Flight height is estimated relative to the position of microphones which is provided by GPS and/
or static topographic datums. They are therefore estimated relative to a reference MSL and may require 
conversion for use in CRMs. Flight height distributions collected via microphone arrays are continuous 
and therefore can be applied to both the basic and extended Band models. The underlying distribution and 
associated confidence intervals may also be statistically modelled but no examples could be found during the 
present review.

Operational considerations
Microphone arrays are generally used to continuously monitor at fixed locations. Individuals are identified to 
species levels and data can be collected for multiple species simultaneously. Microphones require structures 
on which they can be mounted and are therefore restricted to intra- and post-construction. Devices require 
maintenance (hardware and software) while in operation and significant post-processing once data are 
collected. Additional information (e.g. sex) may be embed in sound recordings and environmental loggers can 
be deployed alongside each array. Data collection may be restricted to calm weather but can occur during 
both daylight and nocturnal hours. The present examples of three-dimensional animal tracking occurred 
within terrestrial environments. Microphone arrays have been trialled within the offshore environment to 
monitor migration (e.g. abundance, diversity) and detect collisions but no examples of measuring flight height 
could be found in the present review (Farnsworth & Russell 2007, Suryan et al. 2016). 

3.6.  Radio Detection And Ranging (radar)
Radio detection and ranging (radar) is a radiolocation system that uses radio waves to determine the 
distance, angle, and radial velocity of objects relative to the site. Distances are estimated using known wave 
speeds and the time taken for each reflection to return. Radars can be used to map the trajectory, density, 
and distribution of moving objects (i.e. birds) and have been used to study the flight of birds (e.g. passerines, 
raptors, waders, seabirds) for many decades (Hüppop et al. 2019, Shamoun–Baranes et al. 2019). Three broad 
categories of radar system are regularly used to estimate the flight height distribution of birds: weather 
radars, marine radars and dedicated bird radars (Hüppop et al. 2019, Nilsson et al. 2018). Weather radars 
are usually constructed as part of a wider, nationwide network for long-term monitoring of atmospheric 
conditions (Cohen et al. 2022, Dokter et al. 2011, Kranstauber et al. 2020, Weisshaupt et al. 2021). Marine and 
dedicated bird radars are smaller, often portable systems which are typically used to monitor local site-
specific conditions.

Weather radars are commonly situated on towers from which they intermittently (5—10 minutes) scan (360°) 
at multiple fixed elevation angles (e.g. 0.5—19.5°). They have the largest horizontal (< 250 km) and vertical (< 
5 km) range but altitude distributions are typically derived for a small proportion (5—25 km) of this where 
the vertical resolution (e.g. 200 m) can be resolved into the altitude patterns of interest (Kranstauber et al. 
2020). The lower altitudes associated with wind turbine collisions (< 200 m) are generally not well monitored 
due to ground clutter (i.e. non-bird echoes) and other challenges of interpreting echoes in the near field of 
the antenna. Weather radar are consequently more suited for sampling flight height at large spatial (e.g. 
migration flyway) and temporal (e.g. years) scales (Cohen et al. 2022, Dokter et al. 2011, Nilsson et al. 2018). 

Marine radars traditionally rotate on a horizontal plane to detect collision hazards (e.g. ships, land) and 
provide information (e.g. bearing, distance) for avoidance. When set to rotate on a vertical plane they provide 
an altitudinal distribution of objects (e.g. birds) that pass through the beam (Figure 3.4). The elevation angle 
at which marine radar scan is not fixed but vertical (90°) orientations are typically used to optimise the 
vertical range (< 2 km). Marine radars are readily available (i.e. off the shelf) and as such are frequently used 
to sample bird flight height distributions in relation to human-made (e.g. transmission lines, wind turbines, 
communication towers) structures (Brabant et al. 2021, Bruderer et al. 2018, Fijn et al. 2015, Hilgerloh 2023, 
Hüppop et al. 2006). 
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Figure 3.4 Schematic illustration of theoretical sampling volume and associated variation in sampling 
efficiency with height above sea level (a.s.l.) for rotating vertical radar-based sampling methods. 
Scatterplots depict the sampled volume (cross section) which increases with distance from the sensor and 
is plotted with a) perfect and b) imperfect (decreasing with increasing distance from observers) detection 
of uniformly distributed points (i.e. birds). Histograms show the resulting sampling efficiency under d) 
perfect detection and e) imperfect detection. Grey points represent unsampled birds, red points represent 
all birds within the sampled volume and green points represent all detected birds within the sampled 
volume. Grey bars represent a simulated uniform distribution of birds across height, red bars show the 
apparent flight height distribution arising from not adjusting for the sampled volume and green bars show 
the distribution from not adjusting for sampled volume and a variable detection probability.

Dedicated bird radars (e.g. BirdScan, Merlin, Robin, Accipiter, Birdtrack, ORJIP 2022) are specialised systems 
(hardware and software) designed specifically to monitor local (e.g. collision risk, migration) bird movements 
(Aschwanden et al. 2020, 2018, Pavón-Jordán et al. 2020). There are various operational setups (e.g. paired 
horizontal and vertical rotating radar, vertical pulse radar, phased array radar), each with different scanning 
elevation angles (e.g. 0—180°), operating ranges (vertical < 3 km, horizontal < 15 km), filtering options (e.g. 
rainfall, high waves) and detection capabilities (e.g. wing flap pattern, three-dimensional tracking). Wing flap 
patterns are used to distinguish between bird and non-bird (e.g. insect, bat) and further categorise birds (e.g. 
passerines, waders, large birds) and group size (e.g. individual, flock, Schmid et al. 2019, Zaugg et al. 2008). 
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Figure 3.5 Schematic illustration of theoretical sampling volume and associated variation in sampling 
efficiency with height above sea level (a.s.l.) for pulsing vertical radar-based sampling methods. 
Scatterplots depict the sampled volume (cross section) which increases with distance from the sensor and 
is plotted with a) perfect and b) imperfect (decreasing with increasing distance from observers) detection 
of uniformly distributed points (i.e. birds). Histograms show the resulting sampling efficiency under d) 
perfect detection and e) imperfect detection. Grey points represent unsampled birds, red points represent 
all birds within the sampled volume and green points represent all detected birds within the sampled 
volume. Grey bars represent a simulated uniform distribution of birds across height, red bars show the 
apparent flight height distribution arising from not adjusting for the sampled volume and green bars show 
the distribution from not adjusting for sampled volume and a variable detection probability.

Sampling characteristics
Radar systems record flight heights within predetermined locations and therefore use a Eulerian 
experimental design (Table 4.1). Radar systems can continually (i.e. 24 h d-1) monitor the volume of air above 
(< 5 km) and surrounding (< 250 km) their location, and may generate hundreds of thousands to millions of 
observations depending on the setup (e.g. radar number, frequency, beam shape, scanning pattern/angle) and 
study duration (Fijn et al. 2015, Nilsson et al. 2018, Van Erp et al. 2023). They typically operate from near to 
ground or sea level and can be stationary (e.g. turbines, building, tower) or mobile (e.g. vessel, trailer). Radars 
cannot identify individual birds to species level and therefore do not provide species-specific values of 
flight height. They are, however, routinely paired with additional data collection methods (e.g. camera-based 
systems, observers) which enable species identification and allows for additional (e.g. behaviour) data to be 
collected simultaneously (ORJIP 2022, Skov et al. 2018). Radars are non-invasive but may affect the behaviour 
of birds depending on the location (e.g. structure, vessel, aircraft) of the equipment. 

The sampled volumes covered by radar systems generally have complex shapes depending on the 
instrumentation used, and any derived flight height or density distributions need to be corrected for this. 
The theoretical beam shape can generally be derived when device characteristics are known, and theoretical 
beam patterns in combination with radar measurements have been used to derive altitude-band specific 
correction factors (so called migration traffic rate factors or MTR-factors; Liechti et al. 2019, Schmid et al. 
2019) to account for variation in the sampled volume with altitude. Empirical volume calibration has been 
conducted for a horizontal marine radar used for bird movement analysis (Urmy & Warren 2017). Despite 
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beam-shape adjustments, cross-calibration studies have found substantial differences in estimated bird flux 
rates between different radar devices (e.g. (Liechti et al. 2019, Weisshaupt et al. 2023, 2017), suggesting that — 
in addition to spatial variation in true flux rates between radar locations — the beam-shape adjustments may 
need improvement, as well as that detection characteristics within the beam require further consideration, 
such as differences in the sensitivity and range of object detection or algorithmic differences in signal 
processing and data analysis (Urmy & Warren 2020, Weisshaupt et al. 2023).

The detection probability of radar systems is negatively related to distance from the equipment but positively 
related to object size (Dokter et al. 2013, May et al. 2017, Schmid et al. 2019). The surveyed volume therefore 
varies with object size (i.e. species) and the number of birds detected at greater distances and altitudes will 
potentially be relatively low (i.e. negative observation bias). Species-specific detection probabilities must 
be estimated, and data collection restricted to distances for which probability is reliable (e.g. > 80%). The 
detection probability additionally varies in relation to the aspect (e.g. broadside, head on, tail on) and speed 
of the target bird (McCann & Bell 2017, Urmy & Warren, 2017).

The effective detection range of radar has been assessed using UAVs, theoretical objects and by comparing 
detection rates with those from observers (Dokter et al. 2013, May et al. 2017, Phillips et al. 2018, van Erp et al. 2023).

The detection range of a dedicated bird radar (Merlin) was estimated using a UAV (wing span 2.1 m) fitted with 
a GPS device and assuming a threshold detection probability of 0.5 (May et al. 2017). The detection range of 
gulls, ducks and geese was estimated to be < 1.5 km while for swans it was < 2.0 km. 

The detection range of another dedicated bird radar (RobinRadar) was assessed by comparing detection rates 
with those from visual surveys. The detection range (50% probability) was estimated to be < 1.5 km for a 
range of coastal birds (Dokter et al. 2013). 

The detection range of another dedicated bird radar (RobinRadar 3D Fixed) was estimated using theoretical 
objects within radar cross sections representative of a Carrion Crow (Corvus corone) and a Song Thrush 
(Turdus philomelos, van Erp et al. 2023). The detection range (80% probability) was estimated to be altitudes 
of < 300 m for small birds (< 62.5 g) and < 600 m for larger (500 g) birds. 

The detection capabilities of another dedicated bird radar (Accipiter) were examined by comparing detection 
rates with field observations of individual and flocks of birds (Phillips et al. 2018). Of all observed bird 
movements (n = 972), 15% were detected by the radar of which 12% were individuals and 17% were flocks. 
Most of the birds observed and tracked were medium to large species (e.g. Red-tailed Hawk, Canada Goose) 
and the detection range was < 4.8 km. Detection probability was observed to decrease with distance from the 
radar unit and performance was deemed best < 2 km.

Radar data include many well know sampling errors and observation biases, and require considerable 
processing before subsequent analyses (Tjørnløv et al. 2023, van Erp et al. 2024). The bird detection 
probability of radars is not uniform over the whole radar observation window and there is a minimum and 
maximum distance from the equipment at which birds can be reliably detected. For vertical radar equipment 
placement dictates the minimum observable altitude, potentially leaving a considerable ground-level/sea 
surface-level blind zone. For radars rotating in the vertical plane this can in principle be overcome, but 
interference may still lead to a non-negligible blind zone near the surface. At small distances the radar beam 
is powerful enough to reflect on many unwanted features (i.e. false positive) and with increasing distance the 
radars detection probability decreases (negative observation bias). Nearby features (e.g. turbine rotors, sea 
surface) can disrupt bird detection (i.e. false positive or negative) in the area around them or block the radar 
beam (i.e. false negative) and non-bird objects (e.g. ships, waves) can temporarily increase detection rates 
(i.e. false positive). Environmental conditions (e.g. wind, rainfall, waves) can temporarily increase clutter (i.e. 
false positive) or activate filtering software which reduces detection sensitivity (negative observation bias). 

Measurement characteristics
No studies could be found that have assessed the accuracy and precision of flight heights collected via radar.

Analytical considerations
The survey volume for a bird of given size (expressed as RCS) is defined by the maximum detection distance 
and the RCS specific beam angle (Kreutzfeldt et al. 2020, Schmid et al. 2019). Sampled volumes need to be 
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determined for each employed device, and ideally calibrated, and the data processing algorithms need to 
be considered in any assessment of detection characteristics (Urmy & Warren 2020). Radar estimates flight 
heights relative to MSL and provides continuous flight height data, values may therefore need converting 
before use in CRMs and derived distributions can be input directly into both the basic and extended Band 
models. The underlying distribution and associated confidence intervals can also be statistically modelled but 
no examples of this could be found in this review. 

Operational considerations
Radar is particularly suited for continuous monitoring at fixed locations, although deployment on mobile 
platforms is in principle possible for relatively compact devices. Radar does not collect species-specific 
data but can be paired with visual methods (e.g. camera, observers). Systems can operate 24 h d-1 (i.e. not 
restricted by weather or to daylight hours) and the structures on which radar systems are mounted can 
usually support additional data collection methods (e.g. observers, cameras) and equipment for gathering 
supplementary environmental data. Radars are generally restricted to intra- and post-construction phases of 
wind farm development. The challenge of collecting radar observations close to the surface may limit their 
application to determine the proportion of birds at collision risk.

3.7. Light Detection And Ranging (LiDAR)
Light Detection And Ranging (LiDAR) is an active remote sensing technique that records the three-
dimensional location of objects using pulses of light. The return records are aggregated to create detailed 
three-dimensional maps (i.e. point cloud) of surface structure which can be geo-referenced when combined 
with high resolution GPS data. There are two types of LiDAR system — discrete point return and continuous 
waveform systems (Anderson et al. 2016, Lefsky et al. 2002, Vierling et al. 2008). Discrete return systems 
(currently used for flight height sampling) measure the time taken for a laser pulse to travel to a single 
object and are used to determine height. Continuous waveform systems record the range to multiple targets 
and provide more detailed spatial information but carry a higher data processing cost. LiDAR has been used 
to model the 3D ecological structure of terrestrial environments for many decades, at markedly differing 
spatial scales (e.g. organs, individuals, populations, ecosystems) and for a wide variety of ecosystem (e.g. 
woodland, wetland, agricultural, grassland, urban) types (Davies & Asner 2014, Guo et al. 2021, Wang & 
Menenti,2021). LiDAR is a relatively new approach for estimating seabird flight height distributions (Cook et al. 
2018, NIRAS 2018, Wicikowski et al. 2022).

Sampling characteristics
LiDAR follows a Eulerian sampling design whereby the sensors are fitted to an aircraft which follows 
predetermined transects (constant ground speed) within the area of interest (Table 4.1). LiDAR surveys are 
non-invasive and aircraft are piloted at altitudes (e.g. 350—400 m) thought to minimise disturbance but, 
as with digital aerial surveys, threshold values are based on facilitating population counts (i.e. quantified 
disturbance as birds being prompted into flight) and individuals in flight will be closer to the aircraft (Cook et 
al. 2018, Thaxter & Burton 2009). Sample sizes are moderate (100s to 1,000s) but LiDAR systems do not identify 
birds to species level and are therefore paired with high resolution cameras which simultaneously collect 
aerial imagery. Flights are restricted to calm and dry weather conditions, and daylight hours. The volume of 
air sampled by LiDAR sensors is pyramidal with the apex (i.e. narrow part of the beam) located at the sensor 
(i.e. the aircraft). Birds at higher altitudes are therefore less efficiently sampled (i.e. negative bias) and the 
resulting flight height distributions are potentially biased towards low altitudes. 

The detection probability of LiDAR theoretically decreases with body size due to the increased surface from 
which points can be reflected. Larger species (e.g. Northern Gannet Morus bassanus) have been observed to 
reflect a greater number of LiDAR points compared to relatively smaller ones (e.g. Kittiwake Rissa tridactyla) 
but detection rates for the smallest species (e.g. European Storm Petrel) are currently not known (Cook et 
al. 2018). The former study did detect considerably greater numbers of larger species (i.e. gull sp.) relative 
to small species (e.g. auk sp.) but the position (e.g. broadside, tail-on) and behaviour (e.g. plunge diving, 
shearing) of individuals is also likely to influence detection probability. Detection probability is also expected 
to decrease with increasing distance from the sensor, either as the spread of laser pulses expands (reducing 
point density) or the power of return signals becomes too low to detect. The number of LiDAR points reflected 
from birds however has been reported not to vary (obviously) in relation to vertical (i.e. flight height) 
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distance from the sensor or horizontal distance from the transect line (Cook et al. 2018). The study reported a 
point density of approximately 11 m-2 on the sea surface which is therefore likely suitable for detecting larger 
species. Birds towards the edge of the sampled volume are also less likely to be detected (i.e. false negative) 
and a reduction in the proportion of birds detected at distances greater than 125 m from the transect line 
supports this (Cook et al. 2018).

LiDAR data require processing before any subsequent analyses (Cook et al. 2018, Wicikowski et al. 2022). 
All points that potentially represent birds in flight must be detected and compared with aerial imagery for 
validation and, where possible, identification to species level. This can be achieved by first analysing (e.g. 
visual inspection, cluster analysis) the internal geometry (i.e. angle, distance) of the dataset to identify 
all potential birds. False positives generated at the sea surface (e.g. swell, water droplets) are commonly 
removed by setting a minimum flight height (e.g. 1—2 m) which can vary depending on the weather conditions 
but introduces negative bias towards low flight heights (Cook et al. 2018). The location of the remaining 
points (i.e. x, y, z) is then calculated using information from the LiDAR system and Inertial Measurement Unit 
(IMU) on board the aircraft before being compared with the aerial imagery (Cook et al. 2018). Alternatively, 
the location of all birds detected in the aerial imagery can be recorded and used to identify LiDAR data that 
correspond to their approximate location (Wicikowski et al. 2022). Both methods report that approximately 
90% of birds could be matched in both LiDAR data and aerial imagery. There may, however, be a mismatch 
in sampled volumes, as well as a temporal lag between the LiDAR data and aerial imagery, both of which 
introduce uncertainty when attempting to match images and LiDAR points, particularly for large groups of 
birds at the sea surface.

Flight heights can be estimated by relating information from the LiDAR system to the altitude of the aircraft 
according to IMU (Wicikowski et al. 2022). This approach introduces error (vertical and horizontal) associated 
with estimating the aircrafts altitude into subsequent flight heights. An alternative approach is to compare 
all points classified as birds to those assumed to represent the sea surface (Cook et al. 2018). Flight heights 
(i.e. the difference) are then measured in relation to a reference geoid or the instantaneous sea surface 
height which generates a precise measurement of height above sea level that is independent from the 
aircraft’s altitude.

Measurement characteristics
The accuracy of airborne LiDAR is typically assessed by comparing values with those from controlled sites. 
A series of ground check points are setup and the height of each is measured using a high precision GPS 
device (accuracy < 2—3 cm) and estimated using LiDAR (Cook et al. 2018, Wicikowski et al. 2022). The accuracy 
(mean error cm ± standard deviation) of a LiDAR survey aiming to estimate seabird flights in the Outer Forth 
and Tay Estuaries was assessed against the height of 12 ground control points (Cook et al. 2018). The average 
difference between the LiDAR measurements and those measured using GPS was 6 cm ± 2.5. The same study 
also attempted to measure accuracy by simultaneously flying three UAVs at heights of approximately 10, 40 
and 80 m above sea level. The UAVs were overflown (n = 7) by an aircraft equipped with LiDAR. All three UAVs 
were clearly detected (2—9 points) in all flights over the study area and their flight heights estimated to 
within 100 cm (error range: -94—64 cm). The accuracy (RMSE) of a LiDAR survey aiming to collect seabird flight 
height data in the Moray Firth was measured using a grid of points spaced 50 cm apart over an area of land 
500 cm x 500 cm. Three assessments were made which resulted in accuracies of 1.8 cm, 7.6 cm and 9.3 cm 
(Wicikowski et al. 2022).

Analytical considerations
LiDAR estimates flight altitude relative to MSL or flight height relative to the instantaneous SSH and values 
may therefore require conversion before use in CRMs. The method provides continuous flight height data and 
derived distributions and can therefore be input directly into both the basic and extended Band models. The 
underlying distribution can alternatively be statistically modelled, and confidence intervals estimated (Cook 
et al. 2018). A minimum sample size of 100—200 observations has been suggested necessary to fit robust 
distribution models but the effort required to achieve this may vary considerably (1—227 days) depending 
on the species and season of interest (Cook et al. 2018, Donovan & Caneco 2020). It is also not understood 
whether such relatively small sample sizes are representative of the variation in flight heights observed at 
the population level.
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Operational considerations
LiDAR is particularly suited for near synoptic surveys of large areas. Aerial surveys are restricted to 
fine weather and daylight hours; the data are species-specific and can be collected for multiple species 
simultaneously. Additional behavioural data (e.g. flight speed) are embedded in the images, but no 
environmental data or individual characteristics can be simultaneously collected. The incorporation of two 
sensors (LiDAR and camera) requires an understanding of how the sampled volume of both devices varies 
with altitude. The aircraft must operate where the volume of both sensors is approximately the same for 
optimal results and there is likely a trade-off between survey coverage and detection probability which 
requires consideration (Cook et al. 2018). As with digital aerial surveys, aircraft must operate at higher 
altitudes when flown over structures (e.g. wind farms) and the change to sampling characteristics (e.g. survey 
volume, detection probability) will complicate any pre-post construction comparisons. 

3.8.  Animal-borne tracking devices
Telemetry-based measurements of flight heights can be collected through the deployment of animal-borne 
devices to track the three-dimensional movement of individual seabirds through space and time. Flight height 
is either estimated directly using trilateration (GPS and satellites) or indirectly via barometric altimeters 
(pressure sensors) which require calibration (Johnston et al. 2023, Schwemmer et al. 2023, van Erp et al. 2023).

Sampling characteristics
Animal-borne tracking data are Lagrangian by experimental design and are therefore (theoretically) 
unrestricted by study area boundary and can (theoretically) operate in all environmental conditions (i.e. 
weather, time of day, Table 4.1). In practice, spatial limitations are in part governed by the location of 
deployments, mediated by the movement ranges of the equipped animals, and there may be limitations in 
some environmental conditions (e.g. sampling rates and thus the precision of flight height estimates may 
be lower at night or in winter when batteries can’t be so frequently charged). The number of individuals 
(i.e. sample size) that devices can be attached to is often limited (e.g. available animals, device cost) and 
not randomly selected (e.g. location, breeding status, age class); subsequent measurements are therefore 
potentially not representative of focal populations (Gibb et al. 2017, Watanuki et al. 2016). Animal-borne 
tracking devices are invasive and can negatively affect the physiology, reproduction, and survival of subject 
individuals depending on the attachment method and the relative device mass (Evans et al. 2020, Geen et al. 
2019, Langlois Lopez et al. 2023, Seward et al. 2021). They can also induce a behavioural change (e.g. increased 
foraging, reduced commuting) which potentially limits their ability to accurately estimate natural flight 
height distributions (Gillies et al. 2020, Langlois Lopez et al. 2023, Longarini et al. 2023, Robinson & Jones 
2014). In the UK, the use of tracking devices is licenced through the independent Special Methods Technical 
Panel of the national Ringing Scheme, to ensure that the welfare of study individuals is paramount, with 
requirements to assess potential impacts (typically through comparison with control samples). The relative 
device mass must be no greater than 3% to minimise impacts which limits their use to certain species and 
gaps in bird-borne data exist for many species and groups, and even below this body-mass threshold negative 
effects can occur (Langlois Lopez et al. 2023). Additional data can be collected while attaching the device (e.g. 
species, sex, biometrics) and throughout the individuals’ subsequent activity (e.g. behavioural, environmental, 
physiological). 

The devices deployed can generate tens to hundreds of thousands of flight height data points, but data 
collection is fundamentally limited by logistical considerations, including the availability of suitably trained 
and licensed fieldworkers and device constraints such as battery life. Trade-offs between high (i.e. near 
continuous sampling, typically < 20 s interval between fixes) and low (i.e. intermittent, typically > 1 minute 
interval between fixes) frequency sampling and consequently short or long deployment windows requires 
careful consideration (Clements et al. 2021). Researchers often attempt to optimise battery life by limiting 
high frequency sampling to periods when tags have surplus battery charge (i.e. during periods of sunlight) 
or are within specific areas (i.e. geofences, e.g. Johnston et al. 2023, Peschko et al. 2021, van Erp et al. 2023). 
While optimising battery life has many benefits (e.g. prolonged sampling period) such an approach may 
introduce positive bias towards sunny days (i.e. solar charging) and requires knowledge of where birds will 
travel. Measurement characteristics are additionally often not independent of sampling rates, low frequency 
sampling, for example, may not detect fine-scale behaviours (e.g. climbing to forage and plunge dive) with 
consequences for flight height distributions. Logistic constraints may further limit the ability to randomise 
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samples across individuals and/or study sites, affecting the representativity of collected data with respect to 
the biological population.

Operational considerations
Spatial deployment of animal-borne methods is generally limited by access to suitable locations for 
safely and efficiently capturing and tagging individual animals, and are therefore often biased to seabird 
breeding colonies, which may or may not result in adequate observational coverage for areas of interest 
from a developer’s perspective. There can be additional bias between or within colonies depending on 
ease of access. Telemetry-based methods are theoretically not restricted by environmental conditions (e.g. 
weather, time of day); the data are species-specific and may be collected for multiple species simultaneously 
(depending on device characteristics). Additional behavioural information, such as flight speed and turning 
angle (Akeresola et al. 2024), is embedded in the data, and environmental (e.g. temperature, air pressure, 
immersion, time/depth) and physiological (e.g. heart rate) sensors can be incorporated. Individual physical 
(e.g. mass, wing length), demographic (e.g. sex, age), biological (e.g. feather, faeces, blood), and behavioural 
(e.g. breeding, non-breeding) characteristics can be simultaneously collected while attaching the device.

3.8.1.  GPS positioning
Flight height can be estimated via animal-borne tracking devices using trilateration to determine location 
based on data received from satellites (i.e. GPS). Three-dimensional positions are first calculated in relation 
to a mathematical model of the earth (e.g. geoid, ellipsoid) before digital elevation models (DEMs) are applied 
to estimate height relative to ground or sea level. 

Measurement characteristics
There are several sources of uncertainty which are likely to influence the vertical accuracy of GPS 
trilateration (Péron et al. 2020, Poessel et al. 2018). Various models (i.e. geoid, ellipsoid) can be used to 
calculate an individual’s three-dimensional position and tracking devices vary in which one is used (Péron et 
al. 2020). It is relatively simple to convert from one system of reference to another, but care must be taken as 
this represents a potential source of error in flight height data, and the specific reference system used by a 
device is not always easy to determine from device documentation (Péron et al. 2020). GPS locations contain 
horizontal errors that introduce uncertainty in the link to spatially explicit DEMs, particularly if topology is 
markedly variable (e.g. cliff edge). Errors in the original measurements from which DEMs are interpolated 
are assumed small (i.e. cm) relative to the other sources (e.g. LiDAR, Chai et al. 2022, Kim et al. 2022). The 
number of satellites used by the device to estimate position is also positively related to accuracy and 
more can be utilised as sampling frequency increases. Data are often filtered to limit analyses to locations 
produced above a threshold number of satellites (Lato et al. 2022, Schaub et al. 2023), although there is a 
trade-off between filtering data for quality control and explicitly modelling measurement errors. Filtering 
raw observations effectively truncates the observed flight height distribution, whereas explicit measurement 
error models may be able reconstruct the underlying true flight height distribution (Davies et al. 2024, Péron 
et al. 2020, Ross-Smith et al. 2016). Flight height data from animal-borne tracking devices are also likely to be 
spatially and temporally autocorrelated depending on the sampling interval (more likely with high frequency 
sampling). Autocorrelation within tracking data is commonly accounted for by filtering/resampling (e.g. larger 
time interval), averaging (e.g. individual, location, time), statistical modelling (e.g. autocorrelation structure, 
state-space-model) but it is also frequently ignored (Bogdanova et al. 2021, Borkenhagen et al. 2018, Johnston 
et al. 2023, Lane et al. 2020, Ross-Smith et al. 2016, Tarroux et al. 2016).

The vertical accuracy and precision of GPS trilateration has been estimated by comparing values with those 
of fixed stationary altitudes, drones and by identifying periods when birds were at known or measurable 
altitude (Acácio et al. 2022, Lato et al. 2022, Péron et al. 2020, Schaub et al. 2023, Thaxter et al. 2018, van Erp et 
al. 2023). 

Comparisons of values (high frequency sampling) from two devices (CatLog Generation 2, Catnip Technologies, 
Hong Kong and OrniTrack-25, Ornitela, Lithuania) deployed on a UAV were made with measurements from a 
laser altimeter across a range of altitudes for stationary (2—50 m), horizontal (10 m) and vertical (2—60 m) 
flight patterns (Lato et al. 2022). The CatLog device significantly underestimated altitude for every stationary 
flight height (mean error = -54.93 m) and did so to greater an extent at lower (height range: 2—30 m; -33.96 m 
± 27.15) flight heights compared to higher (height range: 40—50 m; -20.97 m ± 15.19). The OrniTrack-25 device 
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also underestimated stationary flight height (mean error = -12.96 m), but differences were only significant 
at higher flight heights (height range: 20—50 m; -20.43 m ± 15.06). Both devices significantly overestimated 
(CatLog, 40.96 ± 29.99 m; OrniTrack-25, 6.5 m ± 3.13) altitude during horizontal movement but while the 
OrniTrack-25 device significantly underestimated altitude (-3.20 m) during vertical movement the CatLog 
device significantly overestimated altitude (40.40 m).

Schaub et al. (2023) compared height estimates derived from GPS devices (eight device models), made at 
high and low sampling frequencies, deployed on four raptor species (Montagu’s Harrier Circus pygargus, Hen 
Harrier C. cyaneus, Marsh Harrier C. aeruginosus, Red Kite Milvus milvus) when they were stationary and at 
ground level (i.e. height above ground was approximately zero). Vertical accuracy (error from true height) did 
not differ (median range: -3.8—4.3 m) between sampling frequencies (i.e. high, low) but precision (absolute 
error from measured height) was considerably more variable for low (absolute median range: 2.6—17.4 m, 
mean = 6.3 ± 4.6) frequency sampling compared to high (median absolute error range: 1.0—4.0 m, mean = 2.4 
± 1.0). 

The vertical and horizontal accuracy (mean error) of GPS/GPRS tracking devices (1-, 20- and 60-minute 
sampling frequency) was also measured while devices were stationary and both before and while deployed 
on pre-fledging White Storks Ciconia ciconia (Acácio et al. 2022). Both accuracy (horizontal: 1 min = 3.40 m 
± 3.10, 20 min = 4.23 ± 4.15, 60 min = 6.50 m ± 8.34, vertical: 1 min = 4.95 m ± 4.12, 30 min = 6.56 ± 6.72, 60 
min =  9.69 ± 19.28) and precision (horizontal: 1 min = 4.93 m ± 4.15, 20 min = 6.14 ± 5.46, 60 min = 9.15 m ± 
9.46, vertical: 1 min = 3.60 m ± 5.94, 30 min = 8.79 ± 9.17, 60 min =  14.31 ± 24.95)  increased with sampling 
frequency during stationary tests. Horizontal accuracy did not change after deployment (20 minute sampling 
frequency) of the devices on white storks (before: mean = 4.21 m ± 18, after: mean = 4.10 m ± 15) and vertical 
accuracy improved (before: mean = 7 m ± 71, after: mean = 6 m ± 56 m). 

The vertical and horizontal accuracy (mean error with 0.05 and 0.95 quantiles) of GPS tracking devices was 
assessed (6, 60 and 600 second sampling frequency) using stationary tests and while attached to birds (White 
Stork and Honey-buzzard Pernis apivorus) at known heights (nest sites) above ground (Bouten et al. 2013). 
Both horizontal (6 s: mean = 1.13 m, 0.20, 2.33, 60 s: mean = 3.23 m, 0.63, 7.48, 600 s: mean = 29.95 m, 9.26, 
108.10) and vertical (6 s: mean = 1.42 m, 0.25, 3.75, 60 s: mean = 3.99 m, 0.23, 9.76, 600 s: mean = 26.27 m, 2.13, 
102.00) accuracy increased with increasing sampling frequency during stationary tests. Accuracy decreased 
slightly for the device (6 s sampling frequency) attached to the White Stork (horizontal: mean = 2.45 m, 0.34, 
7.14, vertical: mean = 2.77 m, 0.38, 7.61) compared to stationary tests and considerably for the device (600 s 
sampling frequency) attached to the Honey-buzzard (horizontal: mean = 67.43 m, 14.65, 226.30, vertical: mean 
= 20.79, 0.76, 45.24).

The accuracy and precision of GPS tracking devices relative to MSL is regularly assessed by identifying 
periods when animals (particularly seabirds) are assumed to be at the sea surface (i.e. MSL, Johnston et al. 
2023, Thaxter et al. 2018, van Erp et al. 2023). Tracking devices (UvA-BiTS) fitted to Lesser Black-backed Gulls 
Larus Fuscus in the Netherlands recorded a mean altitude of -4.36 m when locations (n = 99,137) were assumed 
to be at the sea surface. (van Erp et al. 2023). Similar devices (UvA-BiTS) fitted to Lesser Black-backed Gulls at 
two sites in the UK (Havergate Island, Isle of May) recorded median altitudes of -3 m and 0 m for Havergate 
Island and the Isle of May respectively (Johnston et al. 2023). The accuracy of altitude measurements from 
GPS devices attached to Lesser Black-backed Gulls (n = 2) was assessed for different sampling frequencies (10, 
16, 60 and 300 seconds, Thaxter et al. 2018). Assessments were restricted to within two hours of mid tide and 
resulted in small variation in median altitude between sampling frequencies (median altitude of 3 m and 2 m 
to 2 m and 2 m between 10- and 300-second sampling frequencies respectively). Boxplot statistics showed the 
whisker limit range increased with increasing sampling frequency (11 and 14 m to 24 and 19 m between 10- and 
300-second sampling frequencies respectively).

Analytical considerations
GPS positions estimate flight altitude relative to MSL and values may need converting before use in CRMs. 
The approach provides continuous flight height data and distributions can either be input directly into both 
the basic and extended Band models. The use of measurement error models to account for the typically 
noisy flight height measurement of low-frequency sampling or autocorrelation within high-frequency is 
recommended  (Péron et al. 2020, Ross-Smith et al. 2016). The number of individuals required to determine 
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two-dimensional (i.e. area use) interactions between seabirds and offshore developments has been estimated 
for a number of species (Guillemot Uria aalge > 19, Razorbill Alca torda > 3, Atlantic Puffin Fratercula arctica > 
20, Kittiwake Rissa tridactyla > 11—20 (site–specific), Lesser Black-backed Gull Larus fuscus > 13—41, Bogdanova 
et al. 2021, Thaxter et al. 2017). The sample size required to characterise three-dimensional space use (i.e. 
flight height distribution) has not been formally assessed but is potentially both species and site specific 
(Bogdanova et al. 2021, Lascelles et al. 2016, Soanes et al. 2015, Thaxter et al. 2017). 

3.8.2.  Barometric altimetry
Barometric pressure sensors can be attached to tracking devices and flight height estimated by measuring 
atmospheric pressure at each position and comparing the values with those at sea level using the barometric 
formular (Johnston et al. 2023, Lane et al. 2020, Péron et al. 2020).

Measurement characteristics
The relationship between altitude and pressure is responsive to changes in the weather, and the barometric 
formula ideally requires an additional measure of sea/ground level pressure for every location (i.e. 
calibration). This is rarely feasible in practice, and measures of sea level pressure are generally estimated 
either using values from additional devices fixed at sea/ground level, from the periods when the attached 
device is predicted to be at sea/ground level (e.g. bird resting on the surface) or from modelled remotely 
sensed data (Cleasby et al. 2015, Johnston et al. 2023, Lane et al. 2020). The consequence is that barometric 
altimeters are commonly not calibrated using in situ observations of sea level pressure, but values are 
modelled at coarser spatial grain than the animal movements which generates temporal autocorrelation in 
the error time series and a systematic over- or underestimation of flight height (Lato et al. 2022, Péron et 
al. 2020, Schaub et al. 2023). The vertical accuracy and precision of barometric altimetry has been estimated 
by comparing values with those from a drone and by using periods when birds fitted with tracking devices 
were at known heights (Lato et al. 2022, Schaub et al. 2023). As with GPS positioning, data are likely to be 
temporally or spatially autocorrelated which can be addressed in several ways (discussed above). 

Comparisons (5-second sampling frequency) of values from a device (AxyAir) with a UAV (fitted with a laser 
altimeter) were made across a range of altitudes for stationary (2—50 m), horizontal (10 m) and vertical (2—60 
m) flight patterns (Lato et al. 2022). Accuracy (mean error ± standard deviation) did not vary across flight 
heights but improved from stationary (-2.14 m ± 11.63) to moving horizontal (-1.0 m ± 3.35) but not vertical 
(-2.0 m) movement. While no significant difference in measurements from barometers and laser altimeters 
was observed, the barometer consistently underestimated altitude. 

Schaub et al. (2023) also compared height estimates derived from devices with barometers (three device 
models), made at continuous and > 5 minute sampling frequencies, deployed on four raptor species 
(Montagu’s Harrier, Hen Harrier, Marsh Harrier, Red Kite) when they were stationary and at ground level (i.e. 
height above ground was approximately zero). Both vertical accuracy (error from true height) and precision 
(error from measure height) did not differ between low and high sampling frequencies. Height above ground 
was consistently underestimated (median range: -15 — -4.9 m) but precision for both low (median absolute 
error range: 2.8—4.2, mean = 3.5 ± 0.7) and high (median absolute error range: 2.3—3.5 m, mean = 2.9 ± 0.6) 
frequency sampling was comparable to that of high frequency sampling via trilateration from the same study.

Analytical considerations
Barometric altimetry estimates flight height relative to the sea surface and values need converting to MSL 
before use in CRMs. The approach provides continuous flight height data and distributions can either be input 
directly into both the basic and extended Band models or statistically modelled (e.g. space-state models) to 
account for measurement error and erroneous records, autocorrelation, and provide confidence intervals 
(Péron et al. 2020, Ross-Smith et al. 2016). Appropriate sample sizes are the same as for GPS positioning 
(discussed above).
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4.  DISCUSSION
4.1.  Strengths, weaknesses, opportunities, and limitations
Many methods have been developed for estimating seabird flight height distributions and a number of 
significant reviews have assessed and compared them (e.g. Largey et al. 2021, Nilsson et al. 2018, Péron et 
al. 2020). Such studies have improved current understanding of each method’s limitations and how the 
uncertainty associated with the flight height estimates they produce and thus collision risk estimates might 
be reduced. Table 4.1 provides a summary of the characteristics of the methods and associated analytical 
operational considerations that have been identified within this review. 

The measurement accuracy and precision of flight height estimates produced by many existing methods 
(e.g. rangefinders, LiDAR, high frequency GPS) is relatively high (< 10 m), and advanced statistical techniques 
(e.g. state-space model, nonlinear models) have been developed that can account for error by describing the 
underlying distributions and providing confidence estimates (Cook et al. 2018, Johnston et al. 2014, Johnston 
& Cook 2016, Ross-Smith et al. 2016). Such measurement error models are however generally only applicable 
when the expected errors are small compared to the desired scale of inference (approximately 10 m when 
collision risks are considered). Several of the discussed methods (i.e. low frequency GPS devices, single-
camera photogrammetry) have expected measurement errors so large (> 50 m) that measurement error 
models may not be able to meaningfully recover underlying flight height distributions. Such methods are not 
currently recommended for estimating seabird flight height distribution.

Sampling uncertainty, however, is generally much less well understood and is often not incorporated into 
analytical workflows. This may be an important reason, why — despite significant efforts — there remains a 
lack of agreement in the flight height estimates produced by different methods, with a resultant degrading of 
confidence in collision risk estimates (Borkenhagen et al. 2018, Johnston et al. 2014, Johnston & Cook 2016). 
Not only may different methods result in different flight height distributions for given species, but there can 
also be differences between studies using the same methods at different sites, reflecting spatial, temporal, 
and individual variation. The ad hoc way observational studies and calibration/validation experiments are 
often designed is a key driver of uncertainty. A lack of transparency (e.g. language, methods, validation) in 
published results is slowing progress and environmental advisors are increasingly reliant on data providers 
to explain the use of novel technology. There is also limited access to raw sensor data (due to commercial 
and intellectual property rights) which in turn limits subsequent analyses and assessment of observation 
technologies.

Nevertheless, technological advances are generating a wide range of new opportunities for flight height 
studies, and such advances are necessary if flight height monitoring is to be scaled out in spatial and/or 
temporal coverage for development and/or operational purposes. Manufacturers of tracking devices, for 
example, are providing increasingly complex programming options which are required for designing robust 
experiments and additional sensors which facilitate more intuitive switching between high and low frequency 
sampling (e.g. high-frequency tracking only when the bird is in flight, Harel et al. 2016). Continuous waveform 
LiDAR systems can distinguish between surface type (e.g. water, land, vegetation) which might remove 
uncertainty associated with birds < 2 m from the sea surface (Wang & Menenti 2021). Moving forward, it is 
essential that all equipment (e.g. sensor, GPS) specifications (e.g. precision, accuracy), calibration (e.g. sample 
volume, detection probability) and processing (e.g. filtering, supplementary data) methods, and raw data 
(e.g. sensor, aircraft GPS) are routinely made publicly available for new sampling technologies. Best practice 
guidance must be developed (and followed) and frequently updated to keep pace with current understanding.

4.2.  Operational considerations
Logistical (e.g. installation of equipment on offshore turbines) and economical limitations potentially restrict 
each method to certain scales (spatial and temporal) of monitoring.
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Observer-based methods (e.g. visual surveys, rangefinder) can be deployed at various spatial (e.g. local, 
regional, national) and temporal (e.g. days, weeks, months) scales but are limited to fine weather and daylight 
hours. They can occur pre-, intra-, and post-construction of wind farms and have no long-term maintenance 
requirements and minimum post-processing requirements (e.g. conversion to MSL). Their cost incorporates 
the requirements of observers (e.g. training, safety, living), their equipment (e.g. optics, rangefinders, PPE) 
and the survey vehicle (e.g. fuel, crew), which can be considerable.

Sea-level camera-based methods (e.g. stereophotogrammetry) are limited to local spatial scales but can 
operate over various temporal (e.g. days, weeks, months) scales. They are however typically limited to 
daylight hours, and detection ranges vary with weather conditions. Cameras require structures on which 
they can be mounted and are therefore restricted to intra- and post-construction, all equipment requires 
maintenance (hardware and software) while in operation and there are considerable post-processing 
requirements (i.e. image analysis). The cost of sea-level camera-based method includes the purchase, 
installation, calibration, and ongoing maintenance of equipment/post processing of data by trained engineers.

Microphone-based methods (e.g. arrays) are limited to local spatial scales but can operate over various 
temporal (e.g. days, weeks, months) scales. They are limited to fine weather but can operate in both daylight 
and nocturnal hours. They require structures on which they can be mounted and are therefore restricted to 
intra- and post-construction. Devices also require maintenance (hardware and software) while in operation 
and significant post-processing once data are collected. The cost of microphone-based methods includes the 
purchase, installation, calibration, and ongoing maintenance of equipment/post-processing of data by trained 
engineers.

Radar-based methods are typically limited to local spatial scales, but their range can be extended to regional 
or national scales via the construction of networks. They can operate at various temporal scales but require 
structures (i.e. restricted to intra- and post-construction unless platforms are present), maintenance 
(hardware and software) while in operation and considerable post processing of data. Radar can operate 
continuously (i.e. 24 h d-1) but may experience interference when environmental conditions (e.g. wind, rain) 
are moderate to severe. The cost of radar-based methods includes the purchase, installation, calibration, and 
ongoing maintenance of equipment/post processing of data by trained engineers.

Aircraft-based methods (e.g. LiDAR, aerial imagery) typically operate at local or regional spatial scales and 
can potentially be extended to national scale by increasing the number of survey vehicles. They are restricted 
to small temporal scales (e.g. hours) but this may also be expanded by increasing the sampling frequency 
(e.g. daily, weekly, monthly). Aircraft-based methods are restricted to fine weather and daylight hours (both 
LiDAR and DAS can potentially be deployed at night, but species ID is not possible), they can be used pre-, 
intra-, and post-construction of wind farms and have no long-term maintenance requirements. Aircraft are 
however restricted to higher altitudes where piloted over wind farms due to safety regulations They can also 
operate far offshore where the use of other methods may not be feasible. The cost of aircraft-based method 
includes the purchase, installation and calibration of equipment, operation of the aircraft (e.g. pilot, fuel) and 
post-processing of data.

Telemetry-based methods operate across all spatial scales (e.g. local, regional, national, global) but are 
typically restricted to smaller temporal scales (e.g. weeks, months) due to device and attachment limitations 
(e.g. battery, tail-mounted devices). They can be used during pre-, intra-, and post-construction of wind 
farms and have no long-term maintenance requirements. The cost of telemetry-based method includes the 
purchase, programming, and attachment (e.g. licenses, PPE) of devices.

4.3.  Best practice recommendations
There should be some basic minimum standards that flight height sampling methods must meet if they are 
to generate robust estimates of collision risk with wind turbines via CRMs. These might be that data are 
species-specific and representative of all annual cycle stages (i.e. breeding, non-breeding, migration) that can 
be encountered within the broad area of interest. Sample size, accuracy and precision should be sufficient 
(here ± 10 m) such that underlying flight height distributions can be statistically modelled (e.g. Cook et 
al. 2018, Ross-Smith et al. 2016). Methods must also ideally be capable of both sampling prior to wind farm 
construction (i.e. baseline data collection) and being operated at regional/national scales (Largey et al. 2021, 
Searle et al. 2023). Rangefinders, LiDAR, and animal-borne tracking devices (high-frequency GPS) broadly meet 
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these requirements or can be incorporated into experimental designs that do so (Table 4.1). 

The following principles are suggested for all flight height studies looking to generate data to inform flight 
height distributions for use in CRMs.

•	 	Studies must make considerable efforts to sample across space (e.g. habitat), time (e.g. day, night, 
weather), and individuals (e.g. sex, age, behaviour) in an unbiased way (i.e. random sampling). 

•	 	Appropriate sample sizes should be determined via power analyses to characterise individual or 
population level flight height distributions at the desired temporal and/or spatial resolutions. 

•	 	Clear and repeatable descriptions of all the methods used to collect and process data should 
always be provided (e.g. MSL model, species specific detection probability, effectively sampled 
volume, work flow) to allow for comparison and assessment by others (e.g. van Erp et al. 2024). 

•	 	Many devices (e.g. rangefinders) provide best practice guidance (e.g. calibration, operation, 
storage) which should be reported and followed. 

•	 	Simultaneous environmental (e.g. wind, sea surface height, tidal phase) and behavioural (e.g. 
foraging, commuting) characteristics should also be routinely collected using standard approaches 
where possible. 

•	 	Data should be reported in a standard format (e.g. flight height relative to MSL ± 95% confidence 
intervals), using common language, and along with all relevant metadata (e.g. environmental 
conditions, SSH, behaviour, platform/observer height) submitted to open data repositories for 
future meta-analyses. 

•	 	Rigorous quality assurance and control procedures should be outlined and implemented 
throughout the collecting and processing of data. 

Routine assessments of the accuracy and precision of methods are not currently common practice but are 
fundamental to understanding (i.e. measurement characteristics) and adequately communicating uncertainty 
(limitations, considerations) in observed flight height distributions (Searle et al. 2023). This is particularly 
important where new or untested equipment is employed. Such assessments should be undertaken in both 
experimental and field conditions, and prioritised over simply collecting additional data (e.g. Harwood et 
al. 2018, May et al. 2017, Schaub et al. 2023). Experimental designs that facilitate the assessment of three-
dimensional accuracy and precision are required to fully understand the limitations of different methods. This 
can be achieved by comparing values with those from moving (e.g. UAVs, balloons, kites) or stationary (e.g. 
ground control sites, structures) targets of known size and position. The accuracy and precision of animal-
borne tracking devices varies considerable depending on the model, measurement method (i.e. trilateration, 
barometric altimetry, sampling frequency), environmental conditions and animal behaviour (e.g. mobile, 
stationary). Routinely testing their accuracy and precision both pre- (e.g. stationary test, UAV) and post- (e.g. 
roosting, nesting, floating) deployment should be a basic requirement (Acácio et al. 2022, Lato et al. 2022, 
Schaub et al. 2023). 

The flight height data collected using the methods discussed provide an imperfect sample of the true 
underlying distribution, and it is increasingly viewed as best practice to statistically model both the sampling 
and measurement characteristics that are thought to influence how the observed distribution arises from the 
true underlying distribution (Péron et al. 2020, Searle et al. 2023). A range of formal error models have been 
assessed for some of these aspects and all should be considered to avoid overconfidence in the results (Cook 
et al. 2018, Johnston et al. 2014, Johnston & Cook 2016, Ross-Smith et al. 2016). More complex analyses of flight 
height distributions will likely require increasingly interdisciplinary work (e.g. animal behaviour, statistical 
analysis, computer programming) but all subsequent inferences are expected to be more reliable.

Estimating the effectively sampled volume and accounting for heterogeneous detection (vertical and 
horizontal dimensions) is essential to Eulerian sampling methods and should be a routine component of 
flight height assessments. Methods for which the maximum sample volume can be theoretical determined 
(e.g. LiDAR, aerial imagery) should provide the value so flight height distributions can be adjusted 
accordingly. Aircraft-based surveys should ideally employ Global Navigation Satellite Systems (GNSS) and 
Inertial Measurement Units (IMU) which, combined with detailed knowledge of the camera and LiDAR setup, 
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would allow accurate quantification of the sampled airspace during a survey. Novel analytical methods 
need developing before detection probabilities can be formally assessed but data that describe the three-
dimensional locations of birds in relation to the sensor/observer will be required and should be routinely 
collected. This can be achieved via visual surveys by recording flight height, and both distance and bearing 
from the observer, or if observers are equipped with rangefinders, elevation angle/flight height, azimuth/
bearing (true), and distance to target/horizontal distance. Digital aerial surveys can record flight height and 
spatial coordinates (via georeferenced images) or if equipped with LiDAR, both the duration and angle of the 
return signal. 

4.4.  Knowledge gaps and research priorities

Knowledge gap 1
There is currently a general lack of analytical methods to account for the heterogeneous detectability that 
is inherent to all Eulerian data collection methods (Table 4.1). A comprehensive understanding of the species-
specific detection probabilities associated with each method is required to determine the effectively sampled 
surveyed volume. The effectively sampled volume is required to accurately estimate height frequency 
distributions but is currently unknown for most if not all Eulerian methods and particularly so for observer-
based (e.g. rangefinder) approaches. The development of protocols and analytical methods for determining 
species-specific detection probabilities of Eulerian sampling methods is therefore a priority. This additionally 
offers the potential to further improve the accuracy of abundance estimates derived from equivalent surveys.

Quantifying variation in detection probability for observer-based sampling methods (e.g. rangefinders) will 
require the development of novel statistical approaches. As previously noted, data that describes the three-
dimensional position of birds in relation to observers will be required and the accuracy and precision with 
which it is collected must be understood. Both sampling procedures and experiments must therefore be 
designed to further understanding in this field.

Variation in the detection probability of discrete LiDAR sampling can also be quantified by examining 
relationships between the characteristics of targets (e.g. size, distance, colour) and accompanying return 
signals (e.g. number, angle). The number of points reflected decreases with target size and a theoretical 
minimum detection size can potentially be determined (Cook et al. 2018). The number of points reflected by 
targets should theoretically also decrease with increasing distance from the sensor due to beam divergence. 
While this is not reported, fewer targets have been detected at the edge of LiDAR transects which supports 
this to some degree and further investigation is required (Cook et al. 2018). 

The detection probability of discrete LiDAR systems is also influenced by atmospheric conditions (e.g. 
moisture) and sea surface attributes (e.g. waves, spray). The sea surface is particularly problematic because 
abundant false detections (combined with the lag between LiDAR and imagery systems) creates uncertainty 
when attempting to match imaged birds with LiDAR points. Efforts must be made to minimise the subsequent 
accepting of false positive or truncation of data. For example, the sea surface is currently assumed a smooth 
plane (i.e. MSL) which ignores the presence of swell. The surface is in fact irregular and treating it so (e.g. 
topographic model, Varbla et al. 2021) would be more reflective of the natural system. LiDAR can also be used 
to simultaneously map the instantaneous sea surface and flights height measured relative to the result. 
Subsequent estimates of flight height would consequently vary depending on each birds location (i.e. wave or 
trough), the application of such data to CRM however needs to be investigated further. Alternatively, continuous 
waveform LiDAR systems are not hindered by atmospheric interference and provide additional information 
regarding reflectivity (i.e. surface properties) of the target. Such systems may remove uncertainty associated 
with the sea as they allow for the classification (and subsequent removal) of sea surface characteristics. 

Knowledge gap 2
The extent to which the behaviour of birds in flight is altered by different sampling methods is not well 
understood, particularly for telemetry- and aircraft-based methods. The flight characteristics (e.g. height, 
speed) of seabirds are strongly related to behaviour (e.g. foraging, commuting) and flight height distributions 
are therefore potentially sensitive to sampling methods that induce behavioural change (Fijn & Collier 2022, 
Ross-Smith et al. 2016, van Erp et al. 2023).

BTO Research Report 78040



Animal-borne tracking devices can significantly alter the behaviour (e.g. increased foraging) of individual 
seabirds such that it may not be representative of the focal population (Bodey et al. 2018, Geen et al. 
2019, Gillies et al. 2020, Longarini et al. 2023). Survey vessels may also induce a behavioural response (i.e. 
attraction, disturbance) from seabirds which may affect subsequent flight height distributions (Jarrett et al. 
2021, Mendel et al. 2019, Schwemmer et al. 2011). While some information is available regarding the response of 
seabirds at the sea surface to aircraft (e.g. Thaxter & Burton 2009), no information could be found regarding 
the response of seabirds in flight. A better understanding of how sampling methods influence individual 
behaviour, and the consequences in terms of flight height distributions is needed.

Knowledge gap 3
Few methods sample across time in a non-biased manner and there is subsequently a limited quantity of 
flight height data that incorporates potential behavioural responses to the complete range of environmental 
conditions (e.g. strong winds, nocturnal) experienced by sea birds (Table 4.1). Sampling across environmental 
conditions as they naturally occur is fundamental to determining true flight height distributions and remains 
a key challenge for most sampling methods.

Animal-borne tracking devices can theoretically sample across time in a non-biased manner and are therefore 
well placed to address this challenge, although studies may be limited in the numbers of sites and individuals 
sampled and thus their spatial representation. An increased/renewed focus within telemetry studies on 
quantifying species-specific relationships (temporal and spatial) between environmental conditions (e.g. wind 
speed, wind direction, temperature, diel cycle phase) and flight characteristics (e.g. height, speed, distance) 
is therefore required (Davies et al. 2024, Kumagai et al. 2023, Ross-Smith et al. 2016, Tarroux et al. 2016, van 
Erp et al. 2023). The sampling characteristics (e.g. sample size, tracking duration) required to make robust 
three-dimensional population level inferences (i.e. flight height distribution) have however not been formally 
determined and additional assessments are needed (e.g. Lascelles et al. 2016, Soanes et al. 2015, Thaxter et al. 
2017).

While most Eulerian sampling methods (i.e. rangefinder, LiDAR) are temporally biased towards particular 
conditions (e.g. calm weather, daylight) they are able to collect environmental (e.g. wind speed, wind 
direction, temperature) and behavioural (e.g. flight height, flight direction, flight type) data for multiple 
species simultaneously (Ainley et al. 2015, Linder et al. 2022). Eulerian sampling methods can also be designed 
to operate at annual temporal scales thereby encompassing all species-specific annual cycle stages (i.e. 
breeding, non-breeding, migration) that can be encountered (Ainley et al. 2015, Linder et al. 2022). 

Understanding and quantifying the functional responses of seabirds to variation in environmental conditions 
will ultimately improve understanding of current flight height distributions and facilitate predictions of 
flight height in conditions not currently represented but of particular interest with regards to collision risk 
(e.g. fog, storms, night). Functional responses are also fundamental to additional modelling approaches (e.g. 
Agent-Based Models, ABMs) which are playing an increasingly important role in predicting the response of 
seabird populations to wind farm developments (Stillman et al. 2015, van Bemmelen et al. 2021, Warwick-Evans 
et al. 2018). 

4.5.  ReSCUE project research priorities
To address some key knowledge gaps discussed in the report, a large part of the proposed research under 
the ReSCUE project will focus on improving current understanding of the accuracy, precision, and detection 
probabilities of observations from airborne platforms, particularly LiDAR. Both experimental trials and 
gap-filling surveys of seabirds should be considered in which targets of various characteristics (e.g. size, 
orientation, colour, surface type), heights and distances (relative to the sensor/observer) are measured 
using LiDAR and imagery, ideally paired at the individual target level. Airborne measurements should be 
complemented, where logistically possible, by simultaneous observations from the ground, for example with 
rangefinders, and high-frequency tracking devices. However, independent investigations of accuracy and 
precision for these complementary methods could be conducted in isolation if necessary. 

The assessment of accuracy, precision, and detection probabilities of continuously sampling sensor-based 
methods such as camera systems, radars, or low-frequency tracking devices, likely require substantially 
different experimental approaches, and we therefore consider the validation of such technologies to be 
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outside of the scope of the ReSCUE project. This does not imply that such technologies cannot form an 
important contribution to a better understanding of flight height distributions.

5.  CONCLUSIONS
The review has highlighted that no one method provides information that is representative of all 
environmental conditions or of spatial variation, for a given species. Thus, for the purposes of producing 
representative flight height distributions for use in CRMs, integration of information across multiple 
measurement methods is likely to be required to overcome the errors and biases inherent to all flight height 
data sampling methods. 

Considering data from Lagrangian and Eulerian methods simultaneously often results in more balanced 
insights and reduced uncertainty when estimating the distribution of seabirds (Carroll et al. 2019, Fischer et 
al. 2023, Phillips et al. 2019, Sansom et al. 2018). The strengths and weaknesses of each sampling method can 
also become more apparent/informative when comparing data from different sampling approaches (Carroll 
et al. 2019, Phillips et al. 2019). The asymmetries and symmetries within comparisons improve understanding 
of how (e.g. where, when, effort) different sampling methods should be employed and help to prioritise data 
collection. It is therefore useful to undertake flight height sampling via multiple methods simultaneously 
within the same area. For comparisons to have value, both sampling and analyses must be designed 
specifically such that similarities and differences between the resulting outputs are informative.

Producing generic flight height distributions for CRMs will likely require combining data from multiple 
sampling methods, sources, and studies (Matthiopoulos et al. 2022). Integrating data from the different 
sampling approaches will have to go beyond simply pooling data from different approaches, or even different 
instrumentations of the same approach because of the inherent assumptions, constraints and biases 
associated with each method (Camphuysen et al. 2012, Watanuki et al. 2016). Common analytical challenges to 
data integration include data scale mismatches (i.e. dimension, resolution), unbalanced data (e.g. sample size, 
information content) and sampling biases (e.g. detection probability, detection accuracy). However, statistical 
frameworks and best practices for data integration in biodiversity monitoring have been developing 
in recent years, and a key component of these frameworks is an explicit accounting for observation 
characteristics of each contributing data source (Isaac et al. 2020, Mancini et al. 2022). This is not merely an 
analytical challenge, but rather also an opportunity to maximise complementary information from different 
observational approaches. It is therefore a priority to ensure that observational and analytical guidelines 
for flight height sampling allow for and perhaps encourage simultaneous monitoring with complimentary 
methods.
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7.  APPENDIX 
7.1.  Method-specific considerations for best practice recommendations

Visual surveys
Visual surveys are most suitable for monitoring areas where flight height distributions are needed for a 
range of species. Such surveys can provide additional information (e.g. species composition, behavioural 
activity) that can be used to prioritise future work. Observers are, however, just as likely to assign birds to 
the correct height band as to the incorrect band (Harwood et al. 2018, Perrow et al. 2017). The incorporation 
of rangefinders ought to improve visual surveys (e.g. training, calibration, accuracy assessment) and such 
devices should replace visual flight height assessments (i.e. height bands) where suitable. For example, 
where they don’t compromise other aspects of environmental site assessment methods. Environmental and 
behavioural data should be simultaneously collected by observers. Although we recognise that satisfactory 
methods for heterogeneous detection in both vertical and horizontal dimensions are lacking, efforts should 
be made to employ experimental designs/survey protocols (e.g. calibration, data collection, validation) that 
facilitate the quantification of three-dimensional, species-specific detection probabilities, particularly by 
recording flight height, horizontal distance and bearing (true) from the observer. 

Rangefinders
As with visual surveys, rangefinders are suitable for collecting flight height data for multiple species 
simultaneously and the presence of observers can help prioritise future work. Rangefinders should replace 
or complement visual surveys where possible or be routinely incorporated into observer training (e.g. 
calibration, accuracy assessment). Rangefinder data are negatively biased against low and very high 
flight heights (e.g. sampling limitations) and observers should follow additional methods (e.g. multiple 
measurements) when measuring such birds. The height of low flying (< 5 m) birds can be visually estimated to 
reduce the bias (Borkenhagen et al. 2018, Harwood et al. 2018). As with visual surveys, flight height data from 
rangefinders should be combined with behavioural observations and information to estimate species-specific 
detection probabilities should be obtained routinely, at minimum by recording elevation angle/flight height, 
azimuth/bearing, and distance to target/horizontal distance, acknowledging again that further statistical 
developments are needed to formally assess heterogeneous detection probability in the context of non-
uniform flight height distributions. New or untested rangefinder equipment should be subject to particularly 
robust validation assessments to describe measurement characteristics (e.g. accuracy, precision) and identify 
sampling limitations (e.g. effective range) or considerations (e.g. optimal platform). Where model-specific (e.g. 
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Vectronix) best-practice (e.g. mounting, calibration, interference, data recording/downloading) guidance is 
available, it should be followed and reported. For example, handheld units need to be held perpendicular to 
the horizon to ensure clinometers work properly and the eye height of surveyors relative to sea surface must 
be record (i.e. sitting or standing).

Single-camera photogrammetry (aerial imagery/stationary platforms)
Currently proposed methods for estimating flight height via single-camera photogrammetry are not 
recommended due to measurement errors resulting from large natural intra-specific variation in seabird body 
size (Boersch-Supan et al. 2024). Flight height estimation from digital aerial surveys can produce substantially 
biased estimates of flight heights and collision risks, as well as their associated uncertainties given large 
measurement and sampling uncertainties. Nevertheless, single-camera methods are in principle attractive 
because they are economical and future developments of both sensor technology and analytical procedures 
may improve precision and accuracy, but further validation of this approach is required.

Stereophotogrammetry
Stereophotogrammetry is yet to be implemented as a tool for sampling flight height in the offshore 
environment. Stereo-camera approaches have great potential to provide accurate and precise estimates 
of flight heights. However, logistical challenges of working in offshore environments (e.g. large baseline 
distances are typically not feasible) and the need to make the analysis of the expected large volumes of 
imagery data (manual processing is unlikely to be feasible for continuous monitoring applications) mean 
that there is likely a cost/precision trade-off to operationalise these approaches in offshore environments. 
Stereophotogrammetry is yet to be more widely implemented as a tool for sampling flight height in the 
offshore environment and further validation needs to be conducted for devices that are robust enough to be 
deployed offshore and the image-analysis workflows associated with them.

Microphone array
Microphone arrays are yet to be implemented as a tool for sampling flight height in the offshore environment, 
and it is not well understood if the approaches used in terrestrial environments translate to the conditions 
encountered in coastal or offshore environments. However, we do consider microphone arrays here, as they 
have the potential to deliver night-time observations of migrating passerines and other bird groups, which 
are relatively poorly studied in the context of offshore collision risk. 

Animal-borne tracking devices
Telemetry-based methods are most useful for species-specific data collection and can provide data on 
spatial, temporal, behavioural and individual variation. High-frequency (i.e. continuous) sampling results 
in the highest vertical and horizontal accuracy but complex programmes must be considered to overcome 
sampling biases (Péron et al. 2020). GPS devices provide estimates of flight altitude relative to MSL and 
values may need converting before use in CRMs; large differences in the vertical accuracy of flight altitude 
estimates may also exist between tag models. Barometric altimetry estimates flight height relative to the sea 
surface and thus requires additional calibration. It is therefore important to consistently test device accuracy 
and precision both pre- (e.g. stationary test, UAV) and post- (e.g. roosting, nesting, floating) deployment 
(Acácio et al. 2022, Lato et al. 2022, Schaub et al. 2023). The state-space model framework has a structure that 
naturally addresses the challenges of sampling errors in vertical space-use data (Péron et al. 2020). Models 
can be fitted directly to data with minimal processing thereby incorporating the full distribution of flight 
heights into analyses. The sample sizes required to make three-dimensional population level inferences are 
currently not understood and careful consideration is required when determining the number of devices to 
deploy (e.g. power analysis). Animal behaviour should be classified (e.g. Hidden Markov Models, Expectation–
maximisation binary clustering) and considered within flight height distributions. The extent to which 
tracking devices alter animal behaviour should also be routinely assessed (Bodey et al. 2018, Geen et al. 2019). 
Appropriate statistical adjustments should be made for data sets containing repeated measurements from 
the same individual (e.g. mixed effects models) to account for temporal autocorrelation and/or individual-
specific behaviours
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Radar
Radar is most appropriate for collecting flight height data when species-specific distributions are not 
required and bird densities are high (e.g. migration periods). Radar systems must be properly calibrated to 
determine size-specific survey volumes and detection probabilities before accurate flight height distributions 
can be estimated (Schmid et al. 2019, Urmy and Warren, 2017). The calibration methods used and all technical 
information on radar parameters must be clearly reported. Radar data contain well know sampling errors 
and observation biases, especially in challenging environments such as open sea. The software within radar 
systems does not provide the level of processing sufficient to guarantee reliable data but a framework for 
processing radar data is available and provides clear and repeatable methods (van Erp et al. 2024). As with 
other sensor-based approaches, analysis pipelines need to be assessed for their influence on the derived 
flight height distributions (Urmy & Warren 2020).

LiDAR
LiDAR is particularly useful for sampling species-specific daytime flight height distributions at relatively 
inaccessible sites (e.g. remote offshore areas). Best practice recommendations are provided by (Cook et al. 
2018) and are summarised here.

Aircraft should operate at altitudes > 300 m above mean sea level (minimise disturbance) and be piloted 
at speeds that ensure the digital camera can capture images with an overlap of 60% (assists with species 
identification). A resolution of 2 cm GSD and point density of > 10 m-2 should optimise survey coverage and 
facilitate the identification of most birds to species level. Careful consideration should be given to ensuring 
that sea conditions do not result in a high number of false positives (i.e. sea clutter) or negative observation 
bias via the removal of data below a threshold height. The LiDAR system must be calibrated such that the 
surveyed volume and associated detection probability are documented. The three-dimensional location of 
each bird is required to assess the distribution of birds relative to the survey volume. A minimum sample size 
of 100 birds from each site and/or seasons being considered offers an optimal balance between being able 
to fit a robust flight height distribution and a realistic level of effort for surveys. The use of formal analyses 
(e.g. power analyses) to determine sample size is however generally preferred. Ground control points should 
be surveyed during every flight and the LiDAR unit should not be moved from the aircraft after calibration 
(or be recalibrated accordingly). The matching of birds in LiDAR and imagery requires careful consideration, 
particularly groups of birds close to the sea surface. Species specific identification rates (where ID is definite, 
grouped where not) should be reported along with quality assurance/control of all processing steps.
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