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Executive Summary 
1. This report assesses the capability of a Spoor AI camera system with both mono-vision 

(single-camera) and stereo-vision capabilities for bird monitoring deployed at the 
European Offshore Wind Deployment Centre in Aberdeen Bay using both theoretical 
considerations and onshore and offshore field trials. 

2. A recent assessment of single-camera photogrammetry has highlighted natural body 
size variation as a fundamental driver of measurement error. We review body size 
variation in 20 species of seabirds and raptors that are of interest in a renewable energy 
context and assess the potential range errors caused by this natural variation. 
a. We find body size variation in wing length measurement that is generally on the 

order of 2-10 %, which translates into ranging errors of 5-10%. 
b. Ranging errors are particularly large in species that are sexually monomorphic in 

appearance, but exhibit large sexual size-dimorphism, in particular gulls. Large 
interspecific differences, especially among gulls, may result in particularly large 
range uncertainty when species identification is incomplete or when 
misidentifications are prevalent in datasets. 

c. Biometric measurements that are of interest for image analysis applications 
(wingspan, total length) differ from those that are routinely collected by 
ornithologists on live birds or museum specimens (wing chord, skeletal and bill 
measures). As a consequence, much of the existing biometric data is difficult to 
apply to image-based ranging techniques.  

3. An onshore field trial was conducted to assess the measurement accuracy of mono-
vision and stereo-vision systems under controlled conditions, using a drone with high-
precision GPS positioning as an experimental target of known size at ranges up to 
500m. 
a. For the stereo-vision system manual target trajectory reconstructions performed 

comparably to automated methods at shorter ranges, but achieved marginally 
smaller distance errors at longer ranges, particularly in lateral and vertical planes (c. 
2% of the target range). Depth (range) errors were consistently larger than in the 
other two dimensions (c. 5% of target range). 

b. Positioning errors increased with greater distances and heights, emphasizing the 
sensitivity of accuracy to camera configuration and synchronization. 

c. For one investigated camera model (Avigilon) frame drops and time synchronization 
drift were observed, affecting data reliability. 

d. Mono-vision systems exhibited significantly larger distance errors compared to 
stereo-vision at c. 5% of the target range in lateral and vertical dimensions and 10-
15% along the depth (range) axis.  

4. An offshore trial at EOWDC involved the continuous collection of video footage over 18 
months, and a concurrent human observer trial utilising a laser range finder (LRF) over 
three days in August 2023.  
a. Mono-vision systems produced in excess of 100,000 tracks across four cameras. 
b. Stereo-vision footage was analysed to manually track birds and reconstruct 3D 

flight paths. The calibration of stereo cameras relied on stationary points, 
landmarks, and turbine features. 

c. A total of 90 bird tracks were manually reconstructed in the period of the human 
observer trial. A limiting factor for this analysis workflow was the need for separate 
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calibrations each day of the measurement campaign. More rigid camera housings in 
future deployments would reduce this requirement. 

d. Stereo-vision reconstructions were deemed more accurate based on estimated 
flight speeds and the shape of bird trajectories, even though  calibrations were 
challenging because of a lack of reliable landmarks, resulting in an underestimation 
of known ranges by ~20%. Despite a short baseline distance stereo-reconstructions 
were considered to be reliable to a range of c. 500m. Increased frame rates and/or 
baseline distances in future deployments would likely expand the reliable stereo-
range further towards the targeted turbine.  

e. Mono-vision reconstructions focussed on birds flying above the horizon angle, as 
the employed tracking algorithm was not designed to detect birds in front of the sea 
surface. Mono reconstructions resulted in bird ranges that were c. 50% larger than 
the corresponding stereo-reconstructions. Mono tracks showed more variability and 
artefacts, such as jitter. Improved range estimates should be possible to obtain from 
a recalibration based on the stereo data. 

f.  LRF observations were intended to validate camera-derived data, although due to 
technical challenges the LRF data were not fit for quantitative validation. Out of 90 
birds tracked via stereo cameras, 63 were matched with LRF observations. Only 
35% of stereo tracks and 20% of mono tracks overlapped with LRF readings. 

5. A statistical model was developed based on distance sampling methods to estimate the 
three-dimensional distribution of birds within the sampled volume of the camera system 
while accounting for imperfect detection, and in particular a drop-off in detection with 
distance to the camera. We implemented the model in the R programming language 
using maximum likelihood optimisation to integrate detectability gradients and bird 
density gradients within the pyramidal sampled volume of the camera. 

a. Simulations tested various scenarios, including different detection functions, 
flight height distributions, field of view constraints, and observation errors. 
Results emphasized the importance of accurate detection function and flight 
height selection, adequate sample sizes (150–200 tracks), and accounting for 
errors in positional data. 

b. Using c. 3,000 mono-vision tracks the model estimated species-specific flux and 
flight height distributions for European Herring Gull, Black-legged Kittiwake, and 
Northern Gannet. 

c. Offshore facing cameras with a 48mm lens provided shorter detection ranges, 
but more reliable data due to a larger field of view compared to inshore cameras, 
which aided identification of the vertical bird density gradient.  

d. Estimated detection functions varied by species and with camera focal length. 
Half-normal detection function standard deviations ranged from c. 250m for 
Kittiwake at 48mm focal length lens to c. 750m for Gannet at 70mm focal length 
(nominal distances from mono-vision reconstructions). At a range of 500m this 
translates to detections of c. 14% of available birds in the former case, and 80% 
of available birds in the latter. 

e. Weather conditions significantly influenced flight height and detectability. For 
example, Herring Gulls flew higher during rain, while Gannets exhibited greater 
detectability in clear weather. Weather covariates improved model accuracy for 
certain species. 
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f. In the mono-vision workflow, object tracking was generally possible at greater 
ranges than species identification. Species identification therefore constrained 
the effective detection range for single-species density and flight height models. 

g. At present the statistical model does not incorporate adjustments for (i) range 
measurements errors, nor (ii) does it explicitly address horizontal bird density 
gradients, such as those caused by meso-avoidance. Not accounting for range 
errors led to overestimated detectability parameters and underestimated 
densities. Correcting these errors using range calibrations based on stereo-
reconstructions yielded more reliable results. Simulations indicated that the bias 
resulting from meso-avoidance, was minimal for the species analysed. 

6. In conclusion we find that the Spoor AI system provides a promising tool for cost-
effective scalable bird monitoring in the offshore environment. In particular, the 
system is capable of delivering the relatively large sample sizes (100s of tracks per 
species and environmental condition) that are required to estimate three-dimensional 
bird distributions in the presence of imperfect detection. Such in-situ estimates of bird 
distributions within OWFs have the potential to greatly reduce uncertainty in outputs 
of current collision risk models which are highly sensitive to assumptions around 
avoidance behaviour at macro- and meso-scales. 

7. Our validation was limited to ranges shorter than distance of the targeted turbines. 
Further improvements to the technology, in particular the camera hardware, should 
enable better positional accuracy of reconstructed tracks at ranges beyond 500m.  

8. There are fundamental trade-offs between mono-vision and stereo-vision approaches 
in terms of measurement capability, equipment costs, and analytical effort. Mono-
vision systems are more limited in the precision of track reconstructions for wild birds, 
but stereo-vision systems come with added cost and complexity. A combination of 
both technologies may combine strengths of both systems, e.g. by scaling out 
monitoring with many mono-vision systems and using a smaller number of stereo 
systems for internal validation and calibration. In-situ validation of the offshore 
system proved challenging, and follow-up investigations highlighted fundamental 
limitations in the capability of human operated LRF devices to comprehensively 
collect validation data. Novel approaches are required to externally validate sensor-
based offshore systems in-situ. 

9. We recommend further development of stereo-vision capabilities in the Spoor AI 
workflow by improving frame synchronization, ensuring more rigid camera mounting, 
enlarging the baseline separation distance and/or conducting in-situ calibrations with 
drones or surface vessels. A more automated stereo-vision workflow could then 
provide a means of internal calibration for mono-vision range estimation. In addition, 
adding tracking capabilities for birds in front of the sea or land surface to the mono-
vision system (as in other existing Spoor AI deployments) would likely greatly 
improve bird density and flight height estimation. 
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1 General Introduction 

1.1 Background and objective 
Offshore wind farms play a critical role in generating clean energy with minimal greenhouse 
gas emissions. However, their potential impacts on local populations of seabirds and 
migratory population of other bird groups raises environmental concerns, especially as 
increasing numbers of turbines are installed along key migratory routes and in the foraging 
ranges of seabird colonies (Croll et al., 2022). However, the scale and nature of interactions 
between birds and offshore wind farms remain uncertain, in part because observations of 
such interactions are technically and logistically challenging, and no existing monitoring 
approach is without sampling and or measurement imperfections. Further developments to 
monitoring technologies are necessary to obtain a more robust evidence base, and to allow 
scalable monitoring as the number and extent of OWFs continue to grow. 

The overall objective of this study was to assess the utility of a Spoor AI system to monitor 
movements of birds around individual offshore wind turbines at the European Offshore Wind 
Deployment Centre (EOWDC) in Aberdeen Bay, with a particular focus on assessing the 
precision and accuracy of generated track reconstructions of individual birds, and the 
potential to quantify bird flux and to detect avoidance behaviour in the close vicinity of the 
monitored turbine. 

To achieve this, we conducted theoretical (Section 2) and experimental (Sections 3,4) work 
to assess the measurement accuracy of the system, that is its potential of reliably 
reconstructing the true positions of imaged seabirds using both single-camera (‘mono-
vision’) and stereo camera approaches. 

To be able to conduct the estimation of bird flux, i.e. the true number of birds traversing the 
airspace of the OWF in a given time interval, we further assessed the sampling 
characteristics of the system and developed a statistical model to estimate bird density while 
accounting for both sampling and behavioural characteristics (Section 5). 

1.2 Performance criteria for bird monitoring systems 
To adequately characterise interactions between birds and offshore wind infrastructure, 
monitoring systems should deliver species-specific data that is representative of all individual 
characteristics (e.g., age, sex, body size), behaviours (e.g., foraging, commuting, resting), 
annual cycle stages (i.e., breeding, non-breeding, migration) and environmental conditions 
(e.g., temperature, windspeed, precipitation, food) that can be encountered within the area of 
interest (Feather et al., in press). Measurements should be free from bias, accurate and 
precise. The types of error and uncertainty associated with bird monitoring data can be 
broadly grouped into measurement and sampling processes, respectively (Borchers et al., 
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2002; Buonaccorsi, 2010). Measurement error here refers to the accuracy and precision of 
the positional information (range, flight height) and species identities of detected birds. 
Sampling error in this context emerges from the experimental design and the method of data 
collection and is shaped by device characteristics such as the sampling geometry and 
detection efficiency. 

 Measurement error 

All monitoring methods incorporate some degree of positional error, which generally arises 
from multiple sources (e.g., equipment, operator, supplementary data) and at various stages 
(e.g., data collection, data analysis) of the sampling process. As the complexity of sampling 
methods increases, errors can arise and interact in increasingly complex and counterintuitive 
ways which further complicates all subsequent inferences. 

Measurement errors that arise due to equipment characteristics (e.g., sensor accuracy, 
sampling frequency) are generally inherent to data collection and usually generate random 
noise around range or height estimates (Harwood et al., 2018; Lato et al., 2022). Errors that 
result from interactions between range / height measurements and supplementary data (e.g., 
sea level pressure, target size reference values) are introduced while data are processed 
and may introduce both random noise and systematic bias to height estimates (Boersch-
Supan et al., 2024; Johnston et al., 2023; Schaub et al., 2023). 

 Sampling error 

There is considerable uncertainty associated with each method’s ability to adequately 
sample the population of interest and none of the methods discussed can provide species-
specific flight height distributions that are fully representative of the populations (i.e., 
properties, constituents), environmental conditions (i.e., biotic, abiotic) and temporal scale 
(e.g., diel cycles, decades) they aim to describe.   

Static sensor-based methods, such as camera systems, fundamentally sample a finite 
volume of airspace (hereafter ‘sampled volume’), and the maximum sampled volume is 
typically determined by sensor characteristics, i.e. the geometry of the field of view. The 
sampled volume of camera-based approaches generally increases with increasing distance 
from the sensor due to the pyramidal shape of the surveyed volume, which is governed in 
the first instance by the aperture angles of the employed cameras (Feather et al., in press).  

In addition to complex geometries of sampling volumes, the detection efficiency of 
monitoring methods is generally not uniform across the sampled volumes and effective 
sampling rates are therefore variable. Typically detectability decreases with increasing 
distance from the sensor due to limitations associated with visibility, optical resolution and / 
or targeting individuals (Barbraud and Thiebot, 2009; Borkenhagen et al., 2018; Harwood et 
al., 2018).  

Both the sampled volume and detection probability may also vary considerably (temporal 
and spatial) in response to environmental conditions. The sampled volume and detection 



12 
 

probability of imagery-based methods typically decreases with worsening weather conditions 
and decreasing light-levels. Detection probabilities are also fundamentally related to the 
species identity of birds - larger birds and/or those with plumage that contrasts the 
background can be detected at greater distances relative to smaller and/or more cryptically 
coloured ones (Barbraud and Thiebot, 2009; Cook et al., 2018; Schmid et al., 2019). 

Image processing and target-tracking algorithms interact with these factors and typically 
have variable performance for different image-context (e.g. species identity, type of 
background). 
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Figure 1-1: Conceptual schematic of the processes affecting sampling efficiency of a camera-based bird 
monitoring system (adapted from Feather et al. in press; a.s.l: above sea level). A: The geometry of the sampling 
volume governs which birds are available to be detected. B: The distance from the sensor generally governs the 
probability of an available bird being detected. C: Image backgrounds can have a strong effect on detectability, 
e.g. a dynamic background such as the sea surface may require different processing techniques than a more 
static background such as the sky. 

1.3 Onshore and offshore field trials 
We investigated the practicality of a Spoor AI-powered camera system by conducting 
onshore experimental work with a well-defined target – a drone with a high-precision GPS 
positioning system, as well as under field conditions at the deployment site at EOWDC in 
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Aberdeen Bay (Figure 1-2). At EOWDC two stereo camera pairs were deployed on a single 
turbine (AWF10), with the aim of reconstructing the three-dimensional flight paths of birds 
passing close to another turbine approximately 900m away. One pair was using 70mm focal 
length lenses aimed at turbine AWF05 (inshore/landward-facing) and one pair was using 
48mm focal length lenses aimed at turbine AWF11 (offshore/seaward-facing). The high-
definition video cameras were mounted on the turbine platform inside weatherproof housings 
approximately 20m above sea level. Strict space limitations meant that for each stereo pair 
the cameras were positioned only 4m apart, resulting in an almost parallel configuration. 

 

 

Figure 1-2: EOWDC at Aberdeen Bay, showing the location of the cameras (AWF10) and the two monitored 
turbines AWF05 (inshore) and AWF11 (offshore). 
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2 A review of intra-specific body size variation in 
seabirds and raptors and potential implications 
for imagery-based monitoring approaches in the 
renewable energy context 

2.1 Introduction 
The rapid growth of wind power generation in the UK and Europe, particularly offshore, is of 
increasing conservation concern due to the direct risk to birds from collisions. Many of the 
most impacted species have vulnerable conservation status; At offshore turbines, these 
include large gulls and other seabirds (Croxall et al., 2012; Furness et al., 2013), and at 
onshore turbines, these include raptors. While raptor fatalities are generally low in absolute 
terms, low species abundances cause raptors to be disproportionately affected by wind 
turbine collisions (Allison et al., 2019; Thaxter et al., 2017). 

While reducing carbon dioxide emissions remains imperative, sustainable development must 
also aim to minimize impacts on nature and wildlife. Wind farm developers in the UK and 
elsewhere are obliged to assess bird densities within their proposed site to inform their 
Environmental Impact Assessments (EIAs). Most assessments use collision risk models 
(CRMs: Band, 2012; Masden and Cook, 2016; McGregor et al., 2018) to estimate i) the 
number of birds flying through the rotor-swept zone (RSZ), ii) the probability of an individual 
bird colliding with an individual wind turbine and iii) overall collision rates across the 
proposed wind farm. Higher proportions of birds at collision risk height result in proportional 
increases in predicted collision rate (Masden et al., 2021).  

CRMs require data on both turbine specifications (such as rotor speed, turbine height) and 
bird characteristics (such as flux, flight height, flight speed, avoidance rates) – and are 
especially sensitive to the flight parameter inputs. These flight characteristics are known to 
vary with different behaviours (Cleasby et al., 2015; Fijn and Gyimesi, 2018) and 
environmental conditions (Hanssen et al., 2020), thus collision risk may vary across 
behaviours. This variability is poorly characterized, and not consistently incorporated into 
CRMs, and as a result, collision risk estimates are based on potentially incomplete or low-
quality data and overly simplistic model assumptions. Currently in the UK, there is no 
systematic effort to quantify or validate collision rates predicted by CRMs (Ballester et al., 
2024). Consequently, our ability to assess the true level of impact of wind farms on seabird 
and raptor populations is restricted. 

At present, the flight characteristics are determined using a variety of approaches. The 
recommended method for collecting flight height data is observer-based visual estimation 
(Strickland et al., 2011), while speed data are taken from existing values in the scientific 
literature which may in turn be based on estimates from stationary observers or animal-
borne sensors (comprising ground speed rather than air speed - e.g. Alerstam et al., 2007). 
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A more scalable and reliable method to quantify flight parameters, and in turn collision risk, 
is to expand the use of sensor-based technologies (Chilson et al., 2012; Shepard et al., 
2016; Thaxter et al., 2016).  

Understanding the accuracy and precision of these new tools is crucial to assess whether 
they can support the generation of a more robust evidence base around collision risks than 
the status quo, and - where precision is limited – whether they allow a robust quantification 
of uncertainty. Both aspects are required to provide confidence in the evidence used to 
inform development consenting decisions (Searle et al., 2023).  

Here, we quantify the level of natural intra-specific variation in seabird and raptor body size, 
to highlight how this variation may result in substantial uncertainties and possible biases in 
bird position and/or trajectory reconstruction based on image analysis. 

2.2 Image-based ranging and trajectory reconstruction 
Monitoring birds in wind farms is challenging which is why a wide range of approaches are 
available for measuring bird positions, including flight heights (Largey et al., 2021). To build 
behaviour-based CRMs three-dimensional flight data are required (Masden and Cook, 
2016), which can only be reliably obtained from sensor-based measurement. As a result of 
recent advances in digital technologies several image-based approaches to 
ranging/positioning have been proposed, both in research settings and for commercial 
application (e.g. Prinsloo et al., 2021; Nicholls et al., 2022; Humphries et al., 2023; Feather 
et al., in press). While the equipment cost may be higher than traditional human observer-
based visual methods, there is a greater capacity to quantify the measurement 
characteristics of these sensor-based devices, allowing for model-based corrections of 
sampling and measurement errors. In addition, such systems offer the potential to quickly 
increase the number of monitoring data, as they can be deployed in remote locations, collect 
large volumes of flight data on temporal and spatial variability, and create a permanent 
record of observations that can be re-analysed. Different technologies have different uses, 
and there are often trade-offs between cost and image resolution, affecting how well birds 
can be identified in images (Nicholls et al., 2022). Ultimately, for the technology to be of 
value in terms of providing accurate data for bird monitoring, the image processing must be 
carefully considered, and appropriate choices made.  

Image-based ranging and flight height determination, or more generally, 3D trajectory 
reconstruction generally falls into one of two overarching approaches: Single-image (also 
known as single-camera or mono-vision) and stereo-image (stereo-vision) techniques. 

Stereo-based approaches are attractive on theoretical grounds, as they are in principle 
capable of reconstructing trajectories of arbitrary targets without requiring any auxiliary data 
about the targets themselves. Stereo-vision approaches rely on triangulation for rangefinding 
and the geometry of the camera pair or camera array is sufficient for track reconstruction, 
and the accuracy of the reconstruction is linked to device characteristics such as image 
resolution, temporal synchronization of stereo-image pairs, and the accuracy of the 
knowledge of the system geometry. Sub-metre spatial accuracy at ranges of up to several 
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hundred metres can be achieved (Brighton et al., 2019, 2022, Prinsloo et al., 2021). 
However, to reliably achieve such precision, instrumentation requirements not only involve at 
least twice as many cameras as mono-vision approaches, but also additional features such 
as large baseline distances between cameras, electronically synchronized shutters and/or 
high image resolution and frame rates. This generally leads to increased instrumentation 
costs, increased image processing requirements, and may decrease deployability, e.g. on 
moving survey platforms. 

For better scalability and economy, a number of mono-vision approaches have been 
proposed (e.g. Lyon, 1994; Willisch et al., 2013; Humphries et al., 2023). Single-image 
photogrammetry relies on the fact that the perceived size of an object decreases as distance 
to the camera increases (Fig. 2-1).  

 

Figure 2-1: Simplified pinhole geometry of photogrammetric relationships. For a fixed focal length f the apparent 
size I of a target object X decreases to I’ as the range Z increases to Z’. When X is known the target range can 
be estimated as Z = fX/I as per the angle-angle-angle similarity theorem. 

However, for objects of unknown size, distance and size cannot be estimated at the same 
time from a single-image alone. Single-camera photogrammetry therefore requires either 
auxiliary information on the range to the target (Bergeron, 2007; Jaquet, 2006; Lyon, 1994), 
or information about target sizes, i.e. individual or species biometric measurements (Willisch 
et al., 2013; Humphries et al., 2023). Any uncertainty in these auxiliary data add to the 
sources of uncertainty in the imaging process (e.g. image resolution), and it is therefore 



20 

crucial to adequately quantify and propagate these uncertainties into the estimated flight 
heights or track reconstructions. 

Error sources arising from the imaging process (e.g. image resolution, variation in camera 
spec) have been covered in depth elsewhere (e.g. Scherz, 1974). At very long ranges, i.e. 
when the apparent size approaches that of a single pixel of the image, the uncertainties from 
the imaging process dominate the overall uncertainty. However, we here focus on the 
biological component of uncertainty, i.e. the role of bird body size variation (and hence target 
size variation) as a source of uncertainty in single-camera photogrammetry applications, as 
recent work has demonstrated that this may be the dominant source of photogrammetry 
error at short to intermediate ranges (i.e. where the image size is considerably larger than 
the image resolution). 

A fundamental property of the photogrammetric relationships is that substituting an unknown 
target length with a mismatched reference length, such as the mean length of the population 
of targets, will result in biased range estimates. E.g. any bird that is shorter than the average 
size of its species will appear further away and hence be assigned a positively biased range 
estimate. Conversely, every bird that is larger than average will appear closer to the camera 
than an average sized bird at the same distance (Fig. 2-2). Consequentially, when using an 
average body size as reference length, the inferred distribution of individual range estimates 
is more dispersed than the underlying true distribution of range estimates.  

Figure 2-2: Schematic showing the effect of a mismatch between assumed target size and actual target size on 
single-camera photogrammetry range estimates. 

In a three-dimensional case any biases in range estimates incur related biases in all three 
axes. For example, for targets above the central camera axis positive range biases will lead 
to positive elevation biases, and for targets below the central axis positive range biases will 
lead to negative elevation biases. 
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2.3 Bird measurements 

 Measuring live birds 

Most bird ringing schemes encourage the collection of biometric data whenever captured 
birds are handled for ringing or ring reading. Measurements on live birds must be taken with 
the utmost consideration for animal welfare. Measurements must be quick to avoid keeping 
birds captive for longer than necessary, and measurements must not cause undue distress 
to the bird in the hand. Additionally, such measurements are generally collected under field 
conditions, which provides challenges such as working in remote locations, suboptimal 
illumination, and exposure to the elements. This limits which body parts can be measured. 
Generally, weight (body mass) and one wing measurement are conducted as a minimum, 
although additional measurements are routinely recorded, including measurements of 
certain flight feathers, and/or external measurements of the hind limbs, bill, or head. 

 Measuring museum specimens 

Dead bird specimens are usually prepared by a taxidermist, who preserves their skins by 
drying them. Generally, absolute length measurements from dried specimens are 0.5 – 2.5% 
lower due to tissue shrinkage, and it has been suggested that a shrinkage factor be applied 
to all data derived from skins (Williams, 2017; Wilson and McCracken, 2008). However, any 
correction factor needs to be species-specific, and shrinkage has also been shown to vary 
within a species (Ewins, 1985). Therefore, other studies caution this approach, as 
measurement error depends heavily on the species, the measure required and the method 
(Barrett et al., 1989; Eck et al., 2012) and hence may be greater sources of error than any 
accrued during the drying process. Nevertheless, all methods – whether on live birds or 
skins – are heavily influenced by the experience of the measurer. 

 Other sources of measurements 

A recent study in UK waters derived flight height data from digital aerial surveys, using 
single-camera photogrammetry (Humphries et al., 2023). Their estimates of flight height 
relied on reference lengths of each bird species flying at the sea surface (identified as such 
by their reflections on the water).  

2.4 Bird biometrics 

 Wing measurements 

The most frequent and most important biometric measurement taken for birds – whether live, 
freshly dead, or a preserved skin – is a measure of wing length. Total body size, especially 
in birds, is difficult to quantify in a single measure, and so wing length serves as a proxy 
since it is highly correlated with body mass, and thus can be used to determine sex and/or 
age in some species (Dawson, 2005). Taking wing measurements is problematic, due to 
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differences between observers and a lack of consistency in technique/preparation (Ewins, 
1985). In addition, wing length also has at least two interpretations dependent on the field of 
study –ornithologists use the distance between the carpal joint (bend in the wing at the wrist 
joint) to the tip of the longest primary on a closed wing (wing chord, Figure 2-2), whereas in 
biomechanics the wing length measure used for assessing flight performance is from the 
shoulder joint (where the wing meets the body) to the wing tip on an outstretched wing, 
(which generally translates to wingspan as 2x wing length + body width). For live birds, the 
most widely published measure (recommended by the European Union for Bird Ringing, 
EURING) is wing chord, using a ruler with a zero-stop, however there are further variations 
in how it is measured. In Europe, the wing camber (natural arc of the primaries) is flattened 
against the measuring device and the primaries are straightened as much as possible 
(Svensson, 1992), while in the US, the measurement is taken on an unflattened wing across 
the natural camber (Ralph, 1993). For museum specimens, measurements will be affected 
by a small shrinkage due to the removal of tissue from the carpalia, or if the wing is sewn or 
positioned too closely to the body during drying this may cause exaggerated curvature of the 
primaries and decrease the wing length (Jenni and Winkler, 1989). While the lengths of 
individual primary feathers do not suffer shrinkage (Jenni and Winkler, 1989). All wing length 
measurements are rounded to nearest mm (so any measure is ±0.5mm).  

Total wingspan is a measurement usually only taken on live or freshly killed birds, and 
involves putting the bird on its back, on top of a ruler, with outstretched but relaxed wings 
(i.e. not stretched). Even though this measure is of high utility for image analysis, it is rarely 
taken due to the difficulties and animal welfare risks involved, or not taken in a single 
measure (i.e. take a half-span measurement which is then multiplied by two and added to 
the body width). In principle wingspan measurements can be derived from imagery taken on 
free-flying birds (e.g. Humphries et al., 2023), but this is expected to incur additional 
uncertainty from postural variation and/or optical foreshortening when the bird is not aligned 
with the image plane. 

 Tarsus 

Usually measured with callipers, from the notch on the back of the intertarsal joint (knee) to 
the edge of the last scale before the toes separate, or where the foot bends backwards. All 
tarsus measurements are rounded to nearest 0.1mm (or 1mm if larger than 100mm)  

 Bill length 

Several types of bill measurements are found in the literature. The most widespread is the 
measurement from the distal edge of the nostril to the tip of the bill (Winker, 1998). Other 
methods include the total culmen length which measures from the bill tip to the base of the 
skull (notch on the forehead), and exposed culmen length which measures from the bill tip to 
the start of the forehead feathers covering the bill. The latter is the most variable 
measurement since the feather edge is less of a distinct point. All bill measurements are 
rounded to nearest 0.1mm (or 1mm if larger than 100mm).  
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 Bill depth 

This is the maximum measurement between top and bottom mandible either at the base of 
the bill where the feathering starts or at the nostril. In skin specimens the mandibles can dry 
in unnatural positions – specimens with any gap between the cutting edges, which cannot be 
closed, should be disregarded.  

 Tail 

The tail is measured by placing a ruler under the tail and pushing it gently against the base 
of the central pair of tail feathers. The measurement is taken to the tip of the longest tail 
feather when the tail is folded naturally. Shrinkage is not one-directional and for the tail, it 
can result in larger measurements than compared to live specimens, as the contact point of 
measurement may shift anteriorly (Eck et al., 2012).   

 Total length 

Recent image analysis techniques have identified species from measurements of head-to-
tail length (Humphries et al., 2023), however, this is rarely taken from live specimens as it is 
difficult to obtain. It involves holding the bird by its legs, laying it dorsally on top of a ruler 
with the tip of the tail touching the zero-stop while gently stretching its crown to rest on the 
ruler. The measurement is read to the bill tip and can generally not be taken on skins. 
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Figure 2-3: Biometric measurements that are of interest for image analysis applications (1-3) differ from those 
that are routinely collected by ornithologists on live birds or museum specimens (4-10). In addition, terminology 
differs between disciplines and subfields, with both maximum wing length (2) and wing chord (5) being referred to 
as “wing length”. Illustration: Ruth Walker/ BTO 

2.5 Bird sexing 
Not only is sexing individuals important ecologically, for establishing life history traits and 
behaviours between the sexes (Roff, 1993; Seyer et al., 2019), but it is particularly critical in 
the context of monitoring birds around wind energy installations, where differences in body 
size has serious effects (Willisch et al., 2013). This generally involves monitoring free-living 
animals of multiple species, where it impossible to ground truth the biometrics of individual 
targets and because many bird species, including seabirds and raptors exhibit sexual 
dimorphism in body size, as well as large inter-individual variation within sexes and across 
geographical ranges. It can be extremely challenging to sex individuals in the field. Many 
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seabirds and raptors are monomorphic by external appearance (exhibit little or no 
differences in plumage between the sexes; Boersma and Davies, 1987; Fairbairn and Shine, 
1993), and even where species do show sexual dimorphisms, the perception of differences 
in colouration or other features can be subjective and hard to observe. 

2.6 Methods 
Here, we quantify the level of natural intra-specific variation in seabird and raptor body size, 
to highlight how this variation may result in substantial uncertainties and possible biases in 
inferences about flight heights. 

We assessed the body size variation of 20 bird species associated with offshore and 
onshore wind developments, predominantly in Europe: 14 seabirds – Great Black-backed 
gull (Larus marinus, GB), Lesser Black-backed gull (Larus fuscus, LB), Herring Gull (Larus 
argentatus, HG), Kittiwake (Rissa tridactyla, KI), Gannet (Morus bassanus, GX), Fulmar 
(Fulmarus glacialis), Manx shearwater (Puffinus puffinus, MX), Guillemot (Uria aalge, GU), 
Common tern (Sterna hirundo, CN), Sandwich tern (Thalasseus sandvicensis, TE), Arctic 
skua (Stercorarius parasiticus, AC), Great skua (Stercorarius skua, GX), European storm 
petrel (Hydrobates pelagicus), Leach’s storm petrel (Oceanodroma leucorhoa); and six birds 
of prey – Red kite (Milvus milvus, KT), Kestrel (Falco tinnunculus, K.), Buzzard (Buteo buteo, 
BZ), Osprey (Pandion haliaetus, OP), Golden eagle (Aquila chrysaetos, EA), White-tailed 
eagle (Haliaeetus albicilla, WE). We reviewed two data sources i) the scientific literature and 
ii) the British and Irish Ringing Scheme.  

For most seabird species, we restricted our literature search to studies of bird populations in 
countries surrounding UK and European waters, however, for Fulmar, Common tern and 
Sandwich tern we included data from the US to increase sample sizes. For all raptor 
species, except Buzzard, there was an absence of measurements for full grown birds, so we 
were required to use published data from museum specimens (Cramp et al., 1988). 
Literature searches were conducted on Google Scholar using combinations of species 
names and the relevant biometric measures (e.g. “wing length”) as search terms. For all data 
derived from skins, we did not apply any shrinkage correction factors since species-specific 
values were not available for the vast majority of species and universal correction factors are 
untrustworthy (Eck et al., 2012). In total, we collated biometric data from 58 references for 6 
characters (wing length, bill length, bill depth, head plus bill length, tail length, and tarsus 
length). We did not consider body weight due to its high variability with breeding status and 
body condition (Croxall, 1995), and because linear measurements are the primary metrics 
that can be extracted from imagery. We focus on wing chord length (further “wing length”) in 
the main text, as this is the most comparable measure to the body length measure employed 
by Humphries et al. (2023). In total we analysed wing chord data from 19,560 individual birds 
from the literature. We filtered out any anomalous wing measurements from the ringing data 
by using a conservative threshold of ±3 times the standard deviation, and removed all 
species, age and sex groupings which had less than five records (excluding WE and OP for 
which there were very few records). In total, we analysed wing length data from 110,306 
individual birds from the ringing data (having removed duplicate records of the same bird).  
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For the literature data, we took the assignments of adult and non-adult age classes from the 
original sources, whereas for the ringing data, we classified birds as adults as soon as their 
plumage was akin to the adult plumage – given that features required for exact ageing, such 
as leg or bill colouration, are likely to not be visible in relatively low-resolution camera 
imagery. In gull species and Gannets moult patterns are more noticeable in the field, and so 
for KI we classified adults as birds of ≥ 3 calendar years (cy); for GB, LB and HG adults 
were ≥ 4 cys, and for GX they were ≥ 5 cy. For all other species, we classified adults as 
birds that were ≥ 1cy. Fledged birds below these ages were classified as non-adults. 
Unfledged birds were excluded from the analysis. 

For each literature source, we recorded the means and standard deviations of the six 
biometric characters listed above, for each age and sex class (where possible). For the 
ringing data, we calculated the mean wing length and standard deviation for each age and 
sex class for each species. To integrate the data across studies and obtain summary 
statistics for pooled age or sex classes, we calculated weighted means 𝜇𝜇 as 

𝜇𝜇 = �𝑝𝑝𝑖𝑖𝜇𝜇𝑖𝑖
𝑖𝑖

. 

and weighted estimates of population standard deviations 𝜎𝜎 as 

𝜎𝜎 = ��𝑝𝑝𝑖𝑖𝜎𝜎𝑖𝑖2
𝑖𝑖

+ �𝑝𝑝𝑖𝑖𝜇𝜇𝑖𝑖2
𝑖𝑖

− ��𝑝𝑝𝑖𝑖𝜇𝜇𝑖𝑖
𝑖𝑖
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where 𝜇𝜇𝑖𝑖 and 𝜎𝜎𝑖𝑖 are the means and standard deviations from a study and age or sex class, 
and 𝑝𝑝𝑖𝑖 are weights calculated as the relevant relative sample size (e.g. single-study sample 
size divided by total sample size across all studies). We then obtained summary coefficients 
of variation (CV) from the weighted means and standard deviations, as a means of 
comparing body size variability across metrics and species (Figs. 2-6 - 2-11). For the 
purposes of visualisation and simulation, we used the weighted means and standard 
deviations to approximate the expected population distributions assuming normal 
distributions (Figs. 2-12, 2-13, 2-17, 2-18). 

Since males and females are generally indistinguishable on imagery, we aggregated the 
sexes into a single category per age class, assuming an even sex ratio (Conover and Hunt 
Jr., 1988; Parkes, 1989). We therefore obtained overall estimates of body size coefficients of 
variation for visually distinguishable groups within each species (Figs. 2-10, 2-15). 
Furthermore, to show the effect of possible species misidentification, we also aggregated 
measurements of the four gull species (GB, LB, HG, KI) into a single category per age class, 
assuming even sex ratios and even occurrence frequencies (Figs. 2-11, 2-16). 

2.7 Results 
Overall, we found intra-specific coefficients of variation in biometrics to range between 2-
10%, except for tail length and bill length in common terns which was >10% in certain 
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age/sex classes (Figs. 2-4 – 2-11). Wing length and head plus bill length showed less 
variation in general than other linear measurements (Figs. 1, 4). Non-adult birds often 
showed more size variation than adult birds, but not in the four gull species combined (Figs. 
2-11, 2-16). The distribution plots show that sexual dimorphism was pronounced in gulls, 
fulmars, skuas and raptors, but not in shearwaters, Gannet, guillemots, terns or petrels. The 
interspecific size differences in gull species resulted in very large size variations for the 
hypothetical populations of “unidentified gulls” in both data sources (wing length CV 15-17%, 
Figs. 2-11, 2-16). 

The observed variation in natural body size imposes expected ranging errors on the scale of 
5-10% of the target range for birds with known species identity (Figure 2-19). 

 

 Literature data 
 

 
Figure 2-4: Coefficients of variation of wing chord (where data available) for visually distinguishable groups of 14 
seabird species (AC, Arctic skua; CN, common tern; F., Fulmar; GB, Great Black-backed gull; GU, Guillemot; 
GX, Gannet; HG, Herring Gull; KI, Kittiwake; LB, Lesser Black-backed gull; MX, Manx shearwater; NX, Great 
skua; TE, Sandwich tern; TM, European storm petrel; TL, Leach’s storm petrel), and six raptor species (pink: BZ, 
Buzzard; EA, Golden eagle; K., Kestrel; KT, Red kite; OP, Osprey; WE, White-tailed eagle).  
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Figure 2-5: Coefficients of variation of bill depth measurements (where data available) for visually distinguishable 
groups of 14 seabird species (see Figure 2-4 for species codes) 

Figure 2-6: Coefficients of variation of bill length measurements (where data available) for visually distinguishable 
groups of 14 seabird species (see Figure 2-4 for species codes). 
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Figure 2-7: Coefficients of variation of head + bill length measurements (where data available) for visually 
distinguishable groups of 14 seabird species (see Figure 2-4 for species codes). 

 

 
Figure 2-8: Coefficients of variation of tarsus length measurements (where data available) for visually 
distinguishable groups of 14 seabird species (see Figure 2-4 for species codes). 
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Figure 2-9: Coefficients of variation of tail length measurements (where data available) for visually distinguishable 
groups of 14 seabird species (see Figure 2-4 for species codes). 
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Figure 2-10: Coefficients of variation of wing length measurements, with sexes pooled, for visually distinguishable 
groups of 14 seabird species (AC, Arctic skua; CN, common tern; F., Fulmar; GB, Great Black-backed gull; GU, 
Guillemot; GX, Gannet; HG, Herring Gull; KI, Kittiwake; LB, Lesser Black-backed gull; MX, Manx shearwater; NX, 
Great skua; TE, Sandwich tern; TM, European storm petrel; TL, Leach’s storm petrel), and six raptor species 
(pink: BZ, Buzzard; EA, Golden eagle; K., Kestrel; KT, Red kite; OP, Osprey; WE, White-tailed eagle)  

 

 

Figure 2-11: Coefficients of variation of six linear measurements, with sexes and gull species pooled, for visually 
distinguishable groups of four gull species (GB, Great Black-backed gull; HG, Herring Gull; KI, Kittiwake; LB, 
Lesser Black-backed gull).  
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Figure 2-12: Wing length (measured as wing chord) distributions of 14 seabird species from published means 
and standard deviations of age/sex classes in each population, scaled by their respective sample sizes. 
Literature sources are given in Table S1. 
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Figure 2-13: Wing length distributions (measured as wing chord) of six raptor species from published means and 
standard deviations of each population, scaled by their respective sample sizes. Literature sources are given in 
Table S1. 
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 Ringing data 

Figure 2-14: Coefficients of variation of wing length measurements (measured as wing chord) for visually 
distinguishable groups of 14 seabird species (AC, Arctic skua; CN, common tern; F., Fulmar; GB, Great Black-
backed gull; GU, Guillemot; GX, Gannet; HG, Herring Gull; KI, Kittiwake; LB, Lesser Black-backed gull; MX, 
Manx shearwater; NX, Great skua; TE, Sandwich tern; TM, European storm petrel; TL, Leach’s storm petrel), and 
six raptor species (BZ, Buzzard; EA, Golden eagle; K., Kestrel; KT, Red kite; OP, Osprey; WE, White-tailed 
eagle). 
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Figure 2-15: Coefficients of variation of wing length measurements (measured as wing chord), with sexes pooled, 
for visually distinguishable groups of 14 seabird species (AC, Arctic skua; CN, common tern; F., Fulmar; GB, 
Great Black-backed gull; GU, Guillemot; GX, Gannet; HG, Herring Gull; KI, Kittiwake; LB, Lesser Black-backed 
gull; MX, Manx shearwater; NX, Great skua; TE, Sandwich tern; TM, European storm petrel; TL, Leach’s storm 
petrel), and six raptor species (pink: BZ, Buzzard; EA, Golden eagle; K., Kestrel; KT, Red kite; OP, Osprey; WE, 
White-tailed eagle).  

 
Figure 2-16: Coefficients of variation of six linear measurements, with sexes and gull species pooled, for visually 
distinguishable groups of four gull species (GB, Great Black-backed gull; HG, Herring Gull; KI, Kittiwake; LB, 
Lesser Black-backed gull). 
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Figure 2-17: Wing length distributions (measured as wing chord) of 14 seabird species and six raptor species 
from the means and standard deviations of ringing data, scaled by their respective sample sizes. 
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Figure 2-18: Wing length distributions (measured as wing chord) of six raptor species from the means and 
standard deviations of ringing data, scaled by their respective sample sizes. 
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Figure 2-19: : Single-camera photogrammetry ranging errors are caused by the mismatch between mean body 
size for a species and the actual body size of an individual. For the seabird and raptor species investigated here 
they amount to 5%-10% of the true target range and affect smaller than average individuals more heavily than 
larger than average ones. Lines for each species are drawn for the 95% interval of body sizes, as represented by 
wing chord measurements from ringing data. (AC, Arctic skua; CN, common tern; F., Fulmar; GB, Great Black-
backed gull; GU, Guillemot; GX, Gannet; HG, Herring Gull; KI, Kittiwake; LB, Lesser Black-backed gull; MX, 
Manx shearwater; NX, Great skua; TE, Sandwich tern; TM, European storm petrel; TL, Leach’s storm petrel; BZ, 
Buzzard; EA, Golden eagle; K., Kestrel; KT, Red kite; OP, Osprey; WE, White-tailed eagle). 

2.8 Discussion 
Most, if not all, methods currently used to reconstruct bird trajectories are affected by 
sampling or measurement errors, or both (Feather et al., in press). Quantifying these errors 
as well as propagating them into any inferences about three-dimensional space-use remains 
an important research priority to ensure bird monitoring data can fulfil its intended purpose, 
e.g. in offshore regulatory contexts (Searle et al., 2023).

We demonstrate above that natural body size variation within species is non-negligible (2-
10% CV), and this provides a fundamental challenge to how precisely positions and 
trajectories of free-flying birds can be estimated using single-camera approaches.  

The observed levels of natural body size variation impose expected ranging errors on the 
scale of 5-10% of the target range. This translates to range errors on the order of 50-100 
metres – roughly the equivalent of the blade length of many current offshore turbines - at 
target ranges of interest in offshore monitoring applications (e.g. inter-turbine distances) and 
may hinder achieving robust inferences at the desired ecological scales. 
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Our estimates of ranging errors are based on measurements of living specimens, as 
routinely collected by field ornithologists, in particular wing chord, skeletal and bill 
measurements. However, such measurements are not directly applicable to most real-world 
image analysis applications. Unfortunately measures that are easily obtained from images, 
such as total wingspan and total length are difficult, if not impossible to collect on living birds. 
Ornithological handbooks do provide wingspan and/or total length measures for many 
species, typically obtained from dead birds or via approximations, but these are often without 
source attribution and typically as ranges without useable statistical measures of spread. 
Although the literature features various approximations to get from single-wing measures to 
wingspan (e.g. Baumgart et al., 2021, Fu et al., 2023), but these generally require secondary 
measurements such as body width or feather dimensions which are similarly challenging to 
obtain.  

Single-camera technologies are attractive from an operational perspective, given the relative 
simplicity of their deployment, and their scalability, which may provide cost-effective 
monitoring where other technologies currently fall short.  

To ensure the data from single-camera technologies form a valid and reliable evidence base 
it is thus imperative that such single-camera approaches — like all methods for determining 
ranges — are adequately validated, and that any uncertainty in their measurements is 
correctly quantified and propagated into subsequent analyses (Searle et al., 2023). This 
extends to derived quantities such as flight height, for which in downward looking systems 
the error is similar or equal to the range error (cf. Boersch-Supan et al., 2023), whereas for 
forward-looking systems the range error propagates as a function of the elevation angle of 
the target relative to the camera (cf. Fig. 5-19). 

Other existing observation technologies are in principle robust to imperfect knowledge of 
seabird body size and have been demonstrated to produce range estimates with 
considerably lower uncertainty. This includes stereo photogrammetry (e.g. Brighton et al., 
2019, Prinsloo et al., 2021), and methods employing direct range estimation of birds such as 
handheld laser rangefinding equipment (Harwood, Perrow and Berridge, 2018). Although, 
these approaches are not without their own implementation, operational and/or analytical 
challenges, they may complement single-camera approaches and aid the calibration and/or 
validation of bird trajectory reconstruction in the face of natural body-size variation and other 
sources of uncertainty. 
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3 Assessment of image-based 3D tracking 
systems for monitoring bird movements 

3.1 Introduction 
While the benefits of transitioning to wind energy generation are clear, in terms of reducing 
CO2 emissions, the rapid growth of the sector has increasing ecological implications for 
avian wildlife. Birds are susceptible to lethal collisions with wind turbines, and many at risk 
species are already high conservation priorities. Determining the true level of impact 
depends on accurate and reliable methods to quantify flight parameters – in particular, 
vertical habitat use relative to turbine height. The various monitoring technologies are suited 
to different purposes, and there are often trade-offs between cost and image resolution, 
affecting how well birds can be identified. Recent approaches have used sensor-based 
technologies (Chilson et al., 2012; Thaxter et al., 2016; Cole et al., 2019), but currently, there 
is no systematic effort to quantify or validate collision rate data (Ballester et al., 2024). 

Image-based approaches offer the potential to collect large volumes of flight data on 
temporal and spatial variability, which can be deployed in remote locations and create a 
permanent record of observations. Image-based flight height determination generally falls 
into one of two approaches: Single-image (also known as single-camera or mono-vision) for 
better scalability and economy, and stereo-image (stereo-vision) for better accuracy. Single-
image photogrammetry systems rely on auxiliary information on the range to the target  
(Bergeron, 2007, Jaquet, 2006, Lyon, 1994) or information about target size, i.e. species 
biometric measurements (Willisch et al., 2013). Any uncertainty in these auxiliary data add to 
the sources of uncertainty in the image processing. Stereo-based systems do not require 
any auxiliary information about the target, and instead rely on the principle of motion parallax 
and the geometry of the camera pair or camera array. The accuracy of the reconstruction 
requires high image resolutions, temporal synchronization of devices, and exact 
measurements of the setup and camera extrinsic parameters. Sub-metre spatial accuracy at 
ranges of up to several hundred metres can be achieved (Brighton et al., 2022; Brighton and 
Taylor, 2019; Prinsloo et al., 2021), but the increased instrumentation costs, increased 
image processing requirements, and (in some cases) reduced deployability (e.g. on moving 
survey platforms) have meant this approach has received little attention. Furthermore, 
setting up cameras at offshore turbines is very space-limited, meaning that optimal 
geometries for stereo configurations cannot be achieved.  

Therefore, to assess the feasibility of mono- and stereo- vision systems, under compromised 
field conditions, we aimed to validate a camera system deployed at an offshore wind farm in 
Aberdeen Bay. We undertook onshore field trials, by replicating the setup as closely as 
possible to the offshore configuration (which was restricted to a very short baseline distance 
between the cameras) and used a drone as our reference object. By comparing the drone’s 
3D position as measured by the onboard GPS, to the 3D position obtained from semi-
automated image analysis (for both mono and stereo) techniques, we can quantify the 
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reconstruction error and hence the accuracy and precision of the AI systems. The mono 
reconstructions were created using the Spoor AI workflow. The stereo-reconstructions were 
based on an established photogrammetry technique (Brighton et al., 2022, Brighton and 
Taylor, 2019) which has previously achieved accuracies on the order of cm when tracking 
birds at ranges <500m. Because this approach relies heavily on manual image processing – 
which is not viable for large or long-term datasets – we use it as a ‘best model’ for testing the 
performance of the AI software. 

3.2 Methods 

 Drone flights 

We recorded video of a DJI Mavic 3E drone flying through a series or predefined transects 
on a cricket field in Ekebergparken, Oslo, Norway, on June 20th, 2023. The drone flight path 
was programmed so that it covered a large area inside the camera field of view. Transects 
consisted of (i) horizontal “lawnmower” left to right flight paths at different heights and 
distances from the cameras (Fig. 3-1A) and (ii) 30-40m length “tetrahedrons” at different 
distances to the cameras (Fig. 3-1B). The drone’s position was recorded by the onboard 
RTK-enabled GPS.   

We used two different pairs of high-definition video cameras: (i) “Axis” (Axis Q1798-LE 
Network) and (ii) “Avigilon” (Avigilon H5 Pro) to reconstruct the three-dimensional flight paths 
of the drone, setting the camera lenses to their widest zoom setting. For the Axis cameras, we 
recorded 25 Hz video at 3,840 × 2,160 pixels (4k), whereas for the Avigilon cameras, we 
recorded 9.63 Hz video at 7,143 × 4,624 pixels (7k). In turn, each camera pair was set in 
stereo configuration with a baseline distance of 4 m. The cameras were mounted on tripods 
and were adjusted to the same height using a tape. The cameras were turned on and left to 
record for the duration of each drone trial.  
 

Trial 
(internal 
code) 

Camera Transect Drone GPS Mono recon 
automated 

Stereo recon 
automated 

Stereo recon 
manual 

1 (05) Avigilon Lawnmower Yes – RTK Yes Partial Partial 
2 
(06,07) 

Avigilon Tetrahedral Yes – RTK Yes Partial No 

3 (08) Axis Lawnmower Yes (no 
RTK) 

Yes Yes Yes 

4 (09) Axis Tetrahedral Yes (no 
RTK) 

Yes Yes Yes 

Table 3-1. Summary of drone trials and 3D reconstructions.   
 

 Photogrammetry for mono camera tracking 
Mono camera track reconstructions were provided by Spoor. 
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 Photogrammetry for stereo camera tracking 

We synchronized the videos using the DLTdv8 video tracking toolbox (Hedrick, 2008) in 
MATLAB R2023b (MathWorks Inc., Natick, MA) by matching the arm motions of a 
fieldworker clapping their hands above their head in front of the cameras. We then applied 
the relevant frame offset to synchronize them to the nearest frame. As the cameras’ shutters 
were not electronically synchronized, this post hoc procedure can only guarantee 
synchronization of the frames to within ±0.02 s at the 25 Hz frame rate, and to within ±0.05 s 
at the 9.63 Hz frame rate. The fully manual method also used the DLTdv8 toolbox to identify 
the 2D pixel coordinates of the drone in both cameras within a pair, manually tracking the 
visual centre of the drone’s body from the point at which it appeared in both cameras until it 
was too distant to see (too few pixels). For the automated method, we used the 2D 
coordinates obtained from the Spoor AI mono tracking outputs. The auto-derived 2D data did 
not retain the frame numbers containing no drone detections, so we were required to 
interpolate the frame number to restore the correct timings. Under both methods, we were 
able to track the drone transects up to ~450m from the cameras. 

We calibrated the cameras by matching 20-30 points across both frames, including 
background features and points on the hovering drone (when it was effectively stationary), to 
cover as much of the capture volume as possible. To get a better scaling for each 
calibration, we took distance measurements in the field using a laser range finder (Leica) 
between two clearly identifiable points in each camera view. Using MATLAB’s Optimisation 
Toolbox R2023b and custom-written code (Walker et al., 2009), the known camera intrinsic 
parameters (sensor size, focal length, frame rate), extrinsic parameters (spacing, tilt) and the 
2D positions of the calibration points were used to solve the camera collinearity equations by 
means of a nonlinear least squares bundle adjustment. The optimisation routine identified 
the jointly optimal estimates of the position and pose of the cameras, and spatial coordinates 
of the calibration points, by minimising the sum of the squared reprojection error of the 
matched image points.  

We assumed no lens distortion and no offset of the principal point with respect to the centre 
of the camera sensor. We used focal lengths of 10,237 pixels for the Axis cameras and 
13,465 pixels for the Avigilon cameras. These values were initially estimated using the 
manufacturers specifications (focal length in pixels = focal length (mm) / sensor width (mm) * 
image width (px)) and then refined in an optimisation during the calibration process. To test 
the sensitivity of our focal length estimation for the Axis cameras, we ran reconstructions 
using focal lengths of 1,850 – 11,000 pixels (in 250 px increments) and looked at the effects 
on the estimated lengths of two scale references (calibration pole and tetrahedron length). 
We found the minimum distance discrepancies between the estimated reference lengths and 
the measured lengths at 10,250 px, which is very close to our optimised value of 10,237 px 
(Fig. S3-1).   

The calibration reconstructs the spatial coordinates of the matched image points in a 
Cartesian coordinate system, aligned with the sensor axes of one of the cameras. To 
compare to the real-world drone GPS data, we were required to transform the spatial 
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coordinates of the drone into an Earth axis system in which the z axis was vertical. To do so, 
we held a pole with a post-level in front of the cameras and filmed and reconstructed its 
image coordinates. The resulting vertical reference was used to calculate the real-world 
rotation that was applied to the data.  

 Aligning the datasets 

To spatially match the drone GPS data and all the photogrammetry reconstructions, we 
converted the drone data to a Universal Transverse Mercator (UTM) coordinate system. All 
datasets were then shifted to be relative to ground level and the array centre (midpoint 
between the cameras). Due to some rotational offset between the GPS and photogrammetry 
datasets, we were required to rotate the GPS data using the measured bearing of the left 
camera (-168°). To temporally match the drone GPS data to the photogrammetry 
reconstructions, we plotted the X axis against time in milliseconds and manually identified 
when the maximum value of the first ‘peak’ occurred in the datasets and shifted the 
photogrammetry data so the peaks aligned with the GPS data. For the Axis cameras, we 
upsampled the GPS data from 5 Hz (200 ms) to 0.04 Hz (40 ms). For the Avigilon cameras, 
because of the decimal frame rate, we had to crop the data to match the start and end points 
of the GPS data (by visually matching the X axis vs time plot) and create a new timestamp 
which matched the length of the drone data in milliseconds.  

We report the root mean square (RMS) reprojection error (standard deviation of the 
residuals, or prediction errors) as a check on the accuracy of the calibrations and 
reconstructions. We assess the mean distance error for each camera system and 
reconstruction type, defined as the mean Euclidean distance between corresponding 3D 
drone points and photogrammetry points. We also assess the mean distance error for the X, 
Y and Z axes separately, and for different distance bands (50m increments away from the 
cameras) and height bands (10m increments above ground level).  

3.3 Results 
For the Avigilon cameras, we found that the raw videos frequently dropped frames during 
processing and therefore the time-synch between cameras drifted considerably over the 
duration of the recordings. This affected our ability to reconstruct the drone position in 
stereo, using either the automated or manual methods, since these methods depend on 
accurate time-synching. Therefore, we only report the results from the Axis cameras for the 
stereo analyses, results are reported as means and their standard errors.  

 Stereo system - manual vs auto 

The manual and auto systems used the same calibration – for the Axis cameras, the RMS 
reprojection error of the calibration was 0.20 px. Using manual 2D tracking of the drone, the 
RMS error of the lawnmower transect was 0.35 px, and 1.20 px for the tetrahedral transect. 
Using automated 2D tracking of the drone, the RMS error of the lawnmower transect was 
0.98 px, and 2.98 px for the tetrahedral transect (Table S3-1). The sub-pixel reprojection 
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error that we achieved in the calibrations is appropriate to the method. The higher 
reprojection error of the drone flights reconstructions is also expected because any 
spatiotemporal error in the matching of points across camera frames will manifest as 
reprojection error in the reconstructions. 

Overall, both systems performed better in the X (lateral) and Z (height) planes, but the Y 
(depth) plane had much larger distance errors (Table 3-2). For the lawnmower transect, the 
3D mean distance error of the fully manual technique was 8.24±6.48 m (mean±SD), 
compared to 10.84±7.40 m for the semi-automated. For each axis separately, the mean 2D 
distance error of the manual and semi-auto techniques respectively, were 1.97±6.48 m and 
2.20±1.17 m for the X axis; 7.15±6.89 m and 10.21±7.62 m for the Y axis; and 2.19±1.19 m 
and 1.65±0.89 m for the Z axis. For the tetrahedral transect, the fully manual technique 
generally performed marginally better, with a 3D mean distance error of 6.70±2.04 m, 
compared to 11.85±5.54 m for the semi-automated, though the latter was inflated by the Y 
axis error. For each axis separately, the mean 2D distance error of the manual and semi-
auto techniques respectively, were 1.67±0.49 m and 1.32±0.62 m for the X axis; 5.20±2.58 
m and 11.3±5.66 m for the Y axis; and 3.36±1.01 m and 2.60±1.20 m for the Z axis. These 
differences were of little practical importance, and statistically significant at larger ranges 
only (p<0.05; linear mixed model for correlated data; Table S3-2) 

 Mono systems – left vs right 

Since the analyses of the left and right cameras are independent, we can compare the 
precision of corresponding data from the left and right cameras. Overall, the mono systems 
also performed better in the X (lateral) and Z (height) planes, with the Y (depth) plane 
showing much larger distance errors, except for one case (Avigilon left camera, tetrahedral 
transect) where the X axis error was greatest (Table 3-3). In addition, the deviations from the 
mean were generally much greater than seen in the stereo systems. For the Axis 
lawnmower transect, the 3D mean distance error of the left camera data was 20.28±11.37 
m, compared to 20.90±31.23 m for the right camera data. For each axis separately, the 
mean 2D distance error of the left camera and right camera respectively, were 4.92±4.31 m 
and 8.01±5.93 m for the X axis; 18.83±11.71 m and 17.38±31.45 m for the Y axis; and 
3.32±1.77 m and 2.83±3.76 m for the Z axis. For the Axis tetrahedral transect, the 3D mean 
distance error of the left camera data was 20.86±29.89 m, compared to 27.54±9.28 m for the 
right camera data. For each axis separately, the mean 2D distance error of the left camera 
and right camera respectively, were 11.2±5.51 m and 5.13±3.71 m for the X axis; 30.8±39.6 
m and 33.7±13.0 m for the Y axis; and 2.53±5.32 m and 2.30±1.85 m for the Z axis. For the 
Avigilon lawnmower transect, the 3D mean distance error of the left camera data was 
33.7±39.7 m, compared to 34.5±12.8 m for the right camera data. For each axis separately, 
the mean 2D distance error of the left camera and right camera respectively, were 11.2±5.51 
m and 5.13±3.71 m for the X axis; 30.8±39.6 m and 33.7±13.0 m for the Y axis; and 
2.53±5.32 m and 2.30±1.85 m for the Z axis. For the Avigilon tetrahedral transect, the 3D 
mean distance error of the left camera data was 22.37±7.37 m, compared to 19.48±20.15 m 
for the right camera data. For each axis separately, the mean 2D distance error of the left 
camera and right camera respectively, were 16.71±6.22 m and 2.58±3.80 m for the X axis; 
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10.97±7.94 m and 17.92±20.43 m for the Y axis; and 6.34±3.64 m and 3.59±3.59 m for the Z 
axis. 

 Effect of distance on error 

We compared the distance error between the reconstructed drone tracks and the drone GPS 
tracks for different height and depth bands for the stereo data (Figs. 3-2A, B) and the mono 
data (Figs. 3-3A, B). For the Axis stereo system, the Y axis error shows a strong increase as 
the depth and the height increases, while the X and Z axis errors remain relatively constant. 
For the Axis mono system, the Y axis error is consistently high over all depth and height 
bands, while the X axis and Z axis errors remain relatively constant or increase only slightly. 
For the Avigilon mono system, the Y axis error shows a strong increase as the depth 
increases but is consistently high over all height bands. For the X axis, the error remains 
constant across depths or increases slightly, except for the right camera lawnmower 
transect, where the error decreases with height. The Z axis errors remain relatively constant 
for height and depth but show a slight increase at the maximum depth distances (>400m).   
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Figure 3-1. Shows the lawnmower transect (A) and tetrahedral transect (B) flown by the drone (black) during the 
Axis camera trials, and the manual stereo-reconstruction points (blue). Red lines connect every 10th corresponding 
point to show the position offset. Axes are distance in metres from the midpoint between the cameras.   

A 

B 
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Figure 3-2A. Stereo camera reconstructions. Distance error of the Axis stereo-reconstructions relative to the 
drone GPS; comparing the automated 2D tracking method (auto) and manual 2D tracking method (manual) for 
lawnmower transects (L) and tetrahedral transects (T). The errors are shown for each axis (x,y and z) with 95% 
confidence intervals, and are divided into (A) longitudinal and (B) vertical distance bands. 
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Figure 3-2B. Stereo camera reconstructions. Relative distance error (error divided by the straight-line distance 
from the midpoint between cameras), of the Axis stereo-reconstructions relative to the drone GPS; comparing the 
automated 2D tracking method (auto) and manual 2D tracking method (manual) for lawnmower transects (L) and 
tetrahedral transects (T). The errors are shown for each axis (x,y and z) with 95% confidence intervals, and are 
divided into (A) longitudinal and (B) vertical distance bands. 
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Figure 3-3A. Mono camera reconstructions. Distance error of the Axis (A,C) and Avigilon (B,D) mono 
reconstructions relative to the drone GPS; comparing the left and right cameras for lawnmower transects (L) and 
tetrahedral transects (T). The errors are shown for each axis (x,y and z) with 95% confidence intervals, and are 
divided into (A,B) longitudinal and (C,D) vertical distance bands. NB some of the CIs extend off the plotting limits.  
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Figure 3-3B. Mono camera reconstructions. Relative distance error (error divided by the straight-line distance 
from the midpoint between cameras), of the Axis (A,C) and Avigilon (B,D) mono reconstructions relative to the 
drone GPS; comparing the left and right cameras for lawnmower transects (L) and tetrahedral transects (T). The 
errors are shown for each axis (x,y and z) with 95% confidence intervals, and are divided into (A,B) longitudinal 
and (C,D) vertical distance bands. NB some of the CIs extend off the plotting limits.  
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Table 3-2. Summary of mean distance errors for the stereo 3D reconstructions compared to 
the drone data.   

measure  system transect  

Stereo - Manual Stereo - Automated 

mean 
dist err 

(m) 
SD (m) SE 

(m) 

mean 
dist err 

(m) 
SD (m) SE 

(m) 

XYZ Axis Lawnmower 8.24 6.48 0.08 10.84 7.40 0.09 
X (left-right) Axis Lawnmower 1.97 1.16 0.01 2.20 1.17 0.01 

Y (depth) Axis Lawnmower 7.15 6.89 0.08 10.21 7.62 0.09 
Z (height) Axis Lawnmower 2.19 1.19 0.01 1.65 0.89 0.01 

XYZ Axis Tetrahedral 6.7 2.04 0.03 11.85 5.45 0.08 
X (left-right) Axis Tetrahedral 1.67 0.49 0.01 1.32 0.62 0.01 

Y (depth) Axis Tetrahedral 5.2 2.58 0.03 11.3 5.66 0.08 
Z (height) Axis Tetrahedral 3.36 1.01 0.01 2.6 1.20 0.02 

 

Table 3-3. Summary of mean distance errors for the mono 3D reconstructions compared to 
the drone data.   

measure  system transect  

Mono - Left camera Mono - Right camera 

mean 
dist err 

(m) 
SD (m) SE 

(m) 

mean 
dist err 

(m) 
SD (m) SE 

(m) 

XYZ Axis Lawnmower 20.48 11.37 0.13 20.90 31.23 0.35 
X (left-right) Axis Lawnmower 4.92 4.31 0.05 8.01 5.93 0.07 

Y (depth) Axis Lawnmower 18.83 11.71 0.13 17.38 31.45 0.35 
Z (height) Axis Lawnmower 3.32 1.77 0.02 2.83 3.76 0.04 

XYZ Axis Tetrahedral 20.86 29.89 0.42 27.54 9.28 0.13 
X (left-right) Axis Tetrahedral 2.07 4.23 0.06 6.39 2.56 0.04 

Y (depth) Axis Tetrahedral 20.20 29.45 0.41 26.30 9.69 0.14 
Z (height) Axis Tetrahedral 3.13 4.60 0.07 2.78 1.90 0.03 

XYZ Avigilon Lawnmower 33.7 39.7 0.67 34.5 12.8 0.21 
X (left-right) Avigilon Lawnmower 11.2 5.51 0.09 5.13 3.71 0.06 

Y (depth) Avigilon Lawnmower 30.8 39.6 0.66 33.7 13.0 0.21 
Z (height) Avigilon Lawnmower 2.53 5.32 0.09 2.30 1.85 0.03 

XYZ Avigilon Tetrahedral 22.37 7.37 0.13 19.48 20.15 0.33 
X (left-right) Avigilon Tetrahedral 16.71 6.22 0.11 2.58 3.80 0.06 

Y (depth) Avigilon Tetrahedral 10.97 7.94 0.14 17.92 20.43 0.33 
Z (height) Avigilon Tetrahedral 6.34 3.64 0.07 3.59 3.59 0.06 
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Figure S3-1. Focal length sensitivity check. Top panel plots the change in estimated length of the calibration stick 
(actual length = 1.14m; dashed line) when running the optimisation with different focal lengths (blue line). Lower 
panel plots the change in estimated length of two sides of the tetrahedron flown by the drone (actual length = 
40m; dashed line) when running the optimisation with different focal lengths (red, green).   

 
 
Table S3-1. Summary of stereo-reconstruction errors 

 RMS error 
(px) 

AXIS 
Stereo 

Calibration 0.21 

Manual 

Drone trial 3 
lawnmower 0.35 

Drone trial 4 
tetrahedral 1.20 

Auto 

Drone trial 3 
lawnmower 0.98 

Drone trial 4 
tetrahedral 2.98 
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Table S3-2: Comparison of stereo-reconstruction methods. We compared spatial 
reconstruction errors by method (manual/automatic) and transect type (lawnmower/pyramid) 
using gaussian linear mixed models with identity links which accounted for the serial 
correlation in the reconstructed tracks using an AR(1) correlation structure. The models took 
the general form: distance_error ~ method*transect + distance*method + ar1(seq + 0 | 
method:transect); where distance represented the distance between the drone and centre of 
the camera array. 

Effects on X error Estimate Std. Error z value Pr(>|z|) Significance 
Intercept (manual, lawnmower) 1.955887 0.328320 5.957 2.56e-09 *** 
automatic -0.127802 0.464977 -0.275 0.78343  
pyramids -1.425639 0.483781 -2.947 0.00321 ** 
distance -0.003527 0.004403 -0.801 0.42310  
automatic:pyramids 0.205344 0.702977 0.292 0.77021  
automatic:distance 0.026773 0.005619 4.765 1.89e-06 *** 
Effects on Y error Estimate Std. Error z value Pr(>|z|) Significance 
Intercept (manual, lawnmower) -1.838072 0.150447 -12.22 <2e-16 *** 
automatic 0.130897 0.213225 0.61 0.5393  
pyramids -0.088681 0.215577 -0.41 0.6808  
distance 1.088762 0.005119 212.71 <2e-16 *** 
automatic:pyramids 0.168731 0.314177 0.54 0.5912  
automatic:distance 0.013382 0.006552 2.04 0.0411 * 
Effects on Z error Estimate Std. Error z value Pr(>|z|) Significance 
Intercept (manual, lawnmower) 3.285089 0.408787 8.036 9.27e-16 *** 
automatic -0.938705 0.578847 -1.622 0.1049  
pyramids 1.012827 0.602057 1.682 0.0925 . 
distance -0.125419 0.005490 -22.844 < 2e-16 *** 
automatic:pyramids 0.044680 0.874434 0.051 0.9592  
automatic:distance 0.048362 0.007004 6.905 5.01e-12 *** 

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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4 Offshore validation trials of Spoor AI systems at 
Aberdeen Bay 

4.1 Introduction 
The flexibility and cost-effectiveness of mono- and stereo- vision systems mean they have 
the potential to be an excellent tool for monitoring birds in offshore environments. We sought 
to investigate their practicality by testing a camera system deployed at an offshore wind farm 
in Aberdeen Bay. We compared the distance measurements of birds observed using a laser 
range finder (LRF) with those obtained from image analysis techniques (both in mono and 
stereo). 

4.2 Methods 
Two stereo camera pairs were deployed on a single turbine in an offshore wind farm 
(AWF10, Fig. 4-1), to reconstruct the three-dimensional flight paths of birds passing close to 
another turbine approximately 900m away. One pair was aimed at turbine AWF05 
(landward-facing) and one pair was aimed at turbine AWF11 (seaward-facing). The high-
definition video cameras were mounted on the turbine platform inside weatherproof housing 
(approximately 20m above mean tide sea level). Cameras were installed by the wind farm 
operator. Strict space limitations meant that for each stereo pair the cameras were 
positioned only 4m apart, resulting in an almost parallel configuration. The camera lenses 
were set to their widest zoom setting (48mm focal length for the seaward-facing pair, 70mm 
focal length for the landward-facing pair) and recorded 8 Hz video at 5,472 × 3,648 pixels 
(6k). The cameras were left to record for the duration of the project (1 year), automatically 
saving the video data as .mkv files in 5-minute segments. 
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Figure 4-1. Image of Aberdeen Bay offshore wind farm, showing the location of the cameras (yellow 
circle) and the two monitored turbines.  
 

 Photogrammetry for mono camera tracking 
Mono camera track reconstructions were provided by Spoor. 

 Photogrammetry for stereo camera tracking 

To calibrate the 3D volume for each stereo pair, we matched 20-30 points across both 
frames. Points included distant landmarks (for the landward cameras only), stationary points 
on the turbine and cloud points (for the seaward cameras only), to cover as much of the 
capture volume as possible (Fig. 4-2). We conducted scale checks for each calibration using 
known distances on the turbine – tower height, blade length and platform width (Tables, 4-1, 
4-2). For the land-facing cameras we also used the straight-line distance to certain points in 
the landscape, identified and measured on an OS map (Fig. 4-2, Table 4-1). The turbine 
tower height was also used as the vertical reference for calculating the real-world rotation 
that was applied to the data. 
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Figure 4-2. Top row: Matched calibration points for the landward cameras (15 stationary turbine points + eight 
landmarks; red = points identified on OS map). Bottom row: Calibration points for the seaward cameras (ten 
stationary turbine points + ten cloud points; grey = one of ten cloud points, with a line linking the others). 

 

We synchronized the videos using the timestamp from the video metadata to get an initial 
estimate of the time offset, before using the wing motions of birds flying through the images 
to get the exact offset (NB this only guarantees synchronization of the frames to within 
±0.0625 s at the 8 Hz frame rate). We obtained the 2D pixel coordinates of any birds in the 
scene by manually tracking the visual centre of the bird’s body from the point at which it 
appeared in both cameras until it passed out of the field of view (Fig. 4-3).  

  

left right 
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Figure 4-3. Top row: 2D tracked bird points in landward cameras (seven birds flying left to right). Bottom row: 2D 
tracked bird points in seaward cameras (three birds flying right to left).  

To reconstruct the 3D bird trajectories, we used the same optimisation routine that was used 
for the drone validation trials (fully manual technique), which identified the jointly optimal 
estimates of the position and pose of the cameras, and spatial coordinates of the calibration 
points, by minimising the sum of the squared reprojection error of the matched image points 
(Walker et al., 2009). We used focal lengths of 19,543 pixels for the landward cameras and 
12,000 pixels for the seaward cameras. These values were calculated using the 
manufacturers specifications (focal length in pixels = focal length (mm) / sensor width (mm) * 
image width (px)). To test the sensitivity of our focal length estimations, we ran 
reconstructions using focal lengths of 19,000 – 20,000 pixels for the landward pair and 
11,600 – 12,400 pixels for the seaward pair (in 100 px increments) and looked at the effects 
on the estimated lengths of the scale references and landmark ranges. We found that over 
the tested ranges the scale distances were relatively stable and so we didn’t apply any 
further refinement to the focal lengths (Figs. S4-1, S4-2).  

left right 
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The tilt of the cameras was measured during installation as ~9.5° for the land-facing pair, 
and ~9° for the sea-facing pair, however – as evidence by the shift in the video images – 
they have moved considerably from their initial positions. Therefore, we manually estimated 
the tilt using the value which caused the turbine in the reconstruction to be closest to its 
actual height above sea level. This resulted in tilts of 5° for the land-facing and 5.5° for the 
sea-facing cameras.  

 

4.2.2.1 Land-facing calibration metrics:  
Table 4-1. Land-facing stereo camera calibration metrics – comparing the estimated 
distances against known measured distances. RMS is the root mean square error in pixels.  

3D points RMS 
(px) 

Estimated 
distance (m) 

Measured 
distance (m) 

Distance 
discrepancy 
(%) 

Calibration points 0.47 n/a n/a n/a 
Vertical reference 0.15 68.6 76 -9.7 
All scale references 

0.69 
60.6 82 -26.1 
63.8 82 -22.2 

Turbine distance from camera  793 880 -9.9 
Turbine height above mean sea level  29 33 -12.1 
Landmark 1 distance from camera  7741 7900 -2.0 
Landmark 1 height above mean sea level  137 ~150 -8.7 
Landmark 2 distance from camera  6696 6700 -0.1 
Landmark 2 height above mean sea level  96 ~85 +12.9 
Landmark 3 distance from camera  5895 6040 -2.4 
Landmark 3 height above mean sea level  91 85+mast (>100?) -9.0 

 
 

4.2.2.2 Sea-facing calibration metrics:  
Table 4-2. Sea-facing stereo camera calibration metrics – comparing the estimated 
distances against known measured distances. RMS is the root mean square error in pixels. 

 
 

 LRF validation and matching 

To assess the accuracy of the 3D reconstructed bird trajectories, a field observer was 
stationed on turbine AWF10 with the aim of measuring any birds flying across the camera 
field of views with a laser range finder (LRF; Vector Aero). Over three days (Aug 9th to 11th 

3D points RMS 
(px) 

Estimated 
spacing (m) 

Measured 
distance (m) 

Distance 
discrepancy 
(%) 

Calibration points 2.06 n/a n/a n/a 
Vertical reference 1.18 63.8 76 -16.1 
All scale references 

0.33 
16.5 14 +17.9 
12.8 21 -39.0 

Turbine distance from camera  725 910 -20.3 
Turbine height above mean sea level  13 33 -60.6 
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2023) the observer recorded 625 fixes (range and bearing) of 190 different birds – species 
identified were Herring Gull, Kittiwake, Gannet, Fulmar, Common tern, Arctic skua, 
Cormorant and Manx shearwater. Technical difficulties meant that the observer was unable 
to record bird height or azimuth and so we used the bearing and time interval of the LRF 
observations to match the tracks to the video data. However, this proved to be challenging 
as magnetic interference from the metal turbine meant the LRF bearings were inaccurate 
and the times of the LRF fixes were only recorded to the nearest minute. Therefore, to limit 
the matching uncertainty between birds, we filtered the LRF data to only include discernible 
species which were easy to identify in the videos (e.g. Gannets, juvenile Kittiwakes) and any 
birds which were temporally separated from any other bird (i.e. only one individual flying 
through the image with no other birds for at least 1-2 minutes either side). We then identified 
these individuals in the video streams, using the associated timestamps, and manually 
tracked them. While we cannot rule out the possibility that the LRF readings may have been 
taken outside the camera field of view, the fact that most birds were on straight flight paths 
means we can be reasonably confident that at least some of the fixes should correspond 
with our photogrammetry birds. 

4.3 Results 
In total we stereo-tracked 90 birds (67 from turbine AWF11 and 23 from turbine AWF5; Fig. 
4-4) from the three observer days and found potential LRF matches for 63 (Table S4-1). Of
these 90 birds we were able to track 54 using mono-vision, which consisted of 89 trajectories
(left and right cameras). Because of the spatial and temporal uncertainty in aligning the
camera data with the LRF data, it would not be appropriate to compare these data
quantitatively. Therefore, we visually compared the flight distances of the LRF tracked birds
with the corresponding bird distances estimated via photogrammetry by overlaying the
reconstructed trajectories onto the arc given by the min-max LRF range from the
observer/camera position (Fig. 4-5). Overall, 19 out of 54 stereo tracks (35%) overlapped the
LRF min-max, whereas only 18 out of 89 mono tracks (20%) were found to overlap.

We compared the measurement difference between each stereo and mono trajectory by 
calculating the mean Euclidean distance between each 3D stereo bird point and 3D mono 
bird point (Fig. 4-6) and found a wide distance discrepancy in many of the flights. We 
assessed each axis separately (Fig. 4-7) and compared the instantaneous stereo and mono 
positions relative to the cameras. Overall, the mono tracks were shown to overestimate the 
heights and ranges compared to the stereo, but the distances in the lateral axes were 
similar. To assess specific flight metrics – tortuosity, path length, amount of turning and 
speed – we had to interpolate any gaps in the stereo data and smooth the trajectories using 
quintic splines (the mono tracks were already smoothed by the Spoor AI software during the 
reconstruction process). We then estimated the straightness of the flight paths (tortuosity) in 
the horizontal plane by dividing the total path length by the straight-line distance between the 
first and last points in the trajectory (i.e. the arc-chord ratio). This revealed that in general the 
mono reconstructions were longer and less straight than the corresponding stereo tracks 
(Fig. 4-8 A,B), and in particular apparent changes of direction in mono reconstructions were 
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not apparent in most stereo-reconstructions . We also calculated the total amount of turning 
(track azimuth) between successive trajectory points in the horizontal plane, which did not 
identify major differences between mono and stereo track reconstructions. (Fig. 4-8C). The 
mean flight speed for each trajectory showed a much wider distribution for the mono tracks 
with some very extreme and unrealistic values, compared to the stereo tracks which had a 
much tighter distribution around 40-50 km/h (10-14 m/s; Fig. 4-8D), which is consistent with 
existing flight speed estimates for seabirds (e.g. Pennycuick, 1987; Cook et al., 2023). 
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Figure 4-4. The 3D reconstructed tracks of 90 birds flying through the wind farm during 3 days in August. The 
grey lines represent the approximate positions of the camera turbine and the focal turbine. NB the cone shape 
produced by the combined trajectories reflects the area of overlap between the cameras.  

z distance (m
) 
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Figure 4-5. Top view of the camera field of view (dashed lines) in relation to the turbines (circles) with three 
stereo reconstructed bird trajectories (blue), 6 mono trajectories (red and dark red) and the min-max range of the 
LRF readings (green) which were identified as matches. Panels show examples of A) a stereo-LRF overlap but 
mono distance is over estimated, although trajectory shapes agree between stereo and mono; B) a poor LRF 
match for stereo and mono, and diverging track shapes with  much more tortuous mono tracks; and C) a good 

A 

B 

C 
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match where all datasets overlap with the LRF distances, although directionality of mono and stereo tracks 
differs.   
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Figure 4-6. Histogram of measurement difference between the stereo and mono trajectories. Mean distance error 
is calculated using the Euclidean distance between each 3D stereo bird point and mono bird point.  

 
 

 

 
Figure 4-7. Scatter plots of point-by-point (top row) and means (bottom row) of stereo x, y and z distances versus 
mono x, y and z distances. The diagonal line represents the 1:1 line.   
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Figure 4-8. Comparison of four different flight metrics – tortuosity (Values closer to 1 indicate a straighter path) , 
path length, cumulative turn angle relative to distance travelled and mean speed – between the stereo and mono 
tracks. NB high values in panel C are a tracking artefact, caused by trajectories with a lot of jitter.  

A B

C D
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 Conclusions and recommendations 

The stereo and mono camera systems work in principle for recording the 3D trajectories of 
seabirds flying in offshore wind farms, for both land-facing and sea-facing camera systems. 
The stereo camera systems were more accurate than the mono systems – with the stereo-
calibration distances being underestimated by around 20% while the mono distances were 
overestimated by about 50%. The stereo-reconstructions also had much better precision 
than the mono reconstructions, producing smoothed curving trajectories as observed in the 
video footage. Whereas the mono trajectories exhibited many wiggles and jerks due to the 
changing size of the detection bounding box as the birds flapped – and therefore are 
artefacts of the tracking algorithm. These artefacts made it difficult to ascertain whether 
movement behaviour inferred from mono trajectories was real, in particular as only one 
stereo trajectory showed a substantial change in direction (Fig. 4-5A). Information on 
instantaneous speed estimates and the track geometry may aid the separation of true 
movement from reconstruction artefacts. In particular it appears likely that artefacts based on 
bounding box fluctuations alone will result in apparent displacements along ray paths, and 
tracks that are close to a plane with a near constant elevation angle relative to the cameras, 
whereas true movement can occur in any plane. However, a much larger sample of stereo 
trajectories with directional changes will be necessary to develop quantitative assessments 
of movement artefacts in mono trajectories. 

Using a laser range finder to validate camera-derived data is far from straightforward, as 
when there were many transiting birds it proved extremely difficult to match the two data 
sources. This was in addition to the fact that the LRF observer could only guess where the 
edges of the camera field of view were in space, so we cannot be certain that LRF fixes 
spatially overlapped with the cameras. Future LRF and camera studies require a more 
systematic approach so that birds may be matched more easily – e.g. having an LRF 
connected to a computer so that it logs a more precise timestamp or having additional 
personnel to monitor a live camera image. Additional inquiries with other projects in the 
offshore monitoring space (including the OWEC ProcBe and ReSCUE projects) revealed 
that imprecise timestamping and low sampling rates are a common feature of LRF user 
interfaces, suggesting that this method is fundamentally limited in providing validation data at 
the scale appropriate for high-throughput monitoring systems such as the Spoor system 
evaluated here. 

As with many other monitoring techniques, the visibility and background contrast are 
important for successful detection. The latter was a major limitation of the mono approach, 
as the reconstruction algorithms require further development to enable tracking of birds in 
front of the sea. Therefore only birds above the horizon were successfully tracked. The 
biggest limitation of the stereo approach was that the calibration needed suitable landmark 
points across the capture volume – rather lacking in the offshore environment. The most 
successful calibrations used points on the turbine and distant landmarks or clouds (the latter 
being a problem on clear days!). The land-facing stereo cameras were calibrated more 
easily and more successfully due to being able to use more appropriate landmarks across 
the capture volume. Changing the value of the focal length in the stereo-reconstructions did 
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not significantly affect the reference measurements (they were quite stable within the ranges 
tested), which suggests that the source of error came from the geometry of the camera 
setup (lack of parallax) and/or the absence of calibration points covering the whole capture 
volume. Calibrations could be improved by using birds as reference objects, but this relies 
on having an accurate time-synch between cameras and so was not an option here.  

The cameras were at a distance of ~900m from the focal turbines and at this distance their 
image resolution was not sufficient for the human eye to be able to observe any birds or 
avoidance behaviours close to the turbines. In contrast, the mono automatic tracking system 
was able to track birds flying behind the turbines (albeit against the sky only), however, its 
detection ability outperformed the ability of a human observer to identify the species. Thus, 
while the mono system relies on this manual element species identification remains a 
significant bottleneck in the approach. Overall, the scalability and practicality of mono 
systems far outweigh stereo systems, making mono systems the obvious choice for long-
term monitoring of meso- and macro- avoidance behaviours. However, the increased 
accuracy of stereo systems makes them the ideal tool for short-term studies on micro-
avoidance behaviours (ideally <500m away, or with larger baseline distances). In addition, 
with some straightforward modifications the mono and/or stereo systems could have 
improved accuracy and reduced reliance on manual techniques: 

• Using the latest camera technologies – crucially, with higher resolutions, higher 
frame rates and electronic time-synching (being only 1 or 2 frames out with the time 
shift resulted in very poor reconstructions). 

• Using the horizon for the vertical reference (i.e. perpendicular to it), or camera 
accelerometer, to improve the real-world transformation (the taper of the turbine 
tower required some approximation). 

• Improve the camera geometry by having a larger baseline distance between the 
cameras to enable more motion parallax between the camera images. 

• Using the horizon and/or the turbine nacelle, or camera accelerometer, to identify 
if/when a camera has shifted and therefore the capture volume needs re-calibrating. 

• More rigid housing and attachments for the cameras so that they do not move – then 
only a single comprehensive stereo-calibration would need to be performed on 
installation (which would be expensive/difficult to repeat, such as moving a drone 
and/or boat through the capture volume as in our onshore experiments). 

In summary, we have shown that camera-based systems could be a valuable tool for 
autonomously monitoring the 3D airspace around turbines. Their ability to operate 
continuously, including in inclement weather when human observers would struggle, 
demonstrates some of their principal benefits. However, the downstream post-processing 
routine needs further development to maximise their potential in these conditions. 
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Figure S4-1. Testing different focal lengths on the performance of the 3D calibration (solid lines) for the 
landward-facing cameras, in terms of how well they estimate the true distances of our scale reference 
measurements (dashed lines). Red = turbine blades (82m); blue = tower height (76m); black = distance to 
turbine (880m).  

Figure S4-2. Testing different focal lengths on the performance of the 3D calibration (solid lines) for the 
seaward-facing cameras, in terms of how well they estimate the true distances of our scale reference 
measurements (dashed lines). Blue = tower height (76m); red = maximum platform width (21m); green = 
minimum platform width (14m); black = distance to turbine (910m).  
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Figure S4-3. 3D trajectories of the seven birds from Figure 4 with 6 matched Spoor mono birds overlain. 
Tracks with colour duplication are the same bird tracked in the left-hand and right-hand cameras. The grey 
lines represent the reconstructed turbine positions. 
 
 

 
Figure S4-4. 3D trajectories of 22 birds from Figure 4 with 30 matched Spoor mono birds overlain. Tracks 
with colour duplication are the same bird tracked in the left-hand and right-hand cameras. The grey lines 
represent the reconstructed turbine positions. 
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bird 

ID turbine date UTC real 
time LRF time UTC time 

diff 
species 

cameras 
species 

LRF 

LRF 
01 

(m) 

LRF 
02 

(m) 

LRF 
03 

(m) 

LRF 
04 

(m) 

LRF 
05 

(m) 

LRF 
06 

(m) 

LRF 
07 

(m) 

LRF 
08 

(m) 

LRF 
09 

(m) 

LRF 
10 

(m) 

LRF 
11 

(m) 
01 5 20230810 09:01:48 n/a n/a HG no match            
02 5 20230810 09:01:49 n/a n/a Gull no match            
03 5 20230810 09:02:10 n/a n/a Gull no match            
04 5 20230810 09:02:11 n/a n/a Gull no match            
05 5 20230810 09:02:56 n/a n/a HG no match            
06 5 20230810 09:03:44 10:04:00 00:00:16 HG HG 187 205          
07 5 20230810 09:03:50 10:04:00 00:00:10 Gull HG 187 205          
DA 5 20230810 11:11:28 12:11:00 00:00:28 KI juv KI juv 115 171 188 236 291       
DB 5 20230810 11:20:36 12:21:00 00:00:24 KI KI 207 236 315 236 389 422      
DC 5 20230810 11:31:42 12:31:00 00:00:42 KI KI 248 264 289         
DD 5 20230810 11:34:16 12:34:00 00:00:16 KI KI 214 214 127 221 203 208 246 294 319 294 319 
DE 5 20230810 11:35:01 12:34:00 00:01:01 KI? KI 214 214 127 221 203 208 246 294 319 294 319 
DF 5 20230810 11:35:15 12:35:00 00:00:15 HG HG 206 327          
DG 5 20230810 11:36:36 12:37:00 00:00:24 HG HG 64 47          
DH 5 20230810 12:21:16 13:21:00 00:00:16 KI KI 170 262          
DI 5 20230810 12:24:15 13:23:00 00:01:15 GX GX 428 546 646         
DJ 5 20230810 12:25:48 13:26:00 00:00:12 GX GX 459 594          
DK 5 20230810 12:36:47 13:36:00 00:00:47 gull KI 166 176 293 315 410 540      
DL 5 20230810 12:45:45 13:45:00 00:00:45 GX GX 333           
DM 5 20230810 13:13:47 14:14:00 00:00:13 KI KI 136 182 123 186        
DN 5 20230810 13:29:11 14:27:00 00:02:11 GX GX 269           
DO 5 20230810 13:57:26 14:57:00 00:00:26 gull KI 186           
DP 5 20230810 13:58:26 14:58:00 00:00:26 GX GX 264           
001 11 20230810 09:12:47 10:12:00 00:00:47 gull KI 108 108 128         
002 11 20230810 09:12:47 10:12:00 00:00:47 gull KI 108 108 128         
003 11 20230810 09:12:47 10:12:00 00:00:47 gull KI 251 330 391         

A 11 20230810 09:26:34 10:29:00 00:02:26 KI KI 132 158 205         
B 11 20230810 09:26:38 n/a n/a HG juv no match            
C 11 20230810 09:28:07 10:29:00 00:00:53 gull HG 77 113          

C1 11 20230810 09:26:49 10:29:00 00:02:11 GX GX 525 570 602 645 937 1003 1062 1214    
C2 11 20230810 09:26:52 n/a n/a UU no match            
D 11 20230810 09:28:19 n/a n/a gull no match            
E 11 20230810 09:31:16 n/a n/a KI no match            
F 11 20230810 09:32:49 n/a n/a gull no match            
G 11 20230810 09:33:27 n/a n/a gull no match            
H 11 20230810 09:33:29 n/a n/a KI no match            
I 11 20230810 09:33:31 n/a n/a gull no match            
J 11 20230810 09:33:31 n/a n/a gull no match            
K 11 20230810 09:33:33 n/a n/a gull no match            
L 11 20230810 09:33:41 n/a n/a KI no match            
M 11 20230810 09:33:44 n/a n/a KI no match            
N 11 20230810 09:34:15 10:35:00 00:00:45 KI KI12 255 251 259 204        
O 11 20230810 09:35:41 10:35:00 00:00:41 HG KI13 302 366 419         
P 11 20230810 09:35:45 10:35:00 00:00:45 UU KI14 299 217 320 347 371 403 453     
Q 11 20230810 09:36:11 10:36:00 00:00:11 Gull HG 88 165 200 251 406 356 514     
R 11 20230810 09:37:15 10:37:00 00:00:15 KI KI 245 239 207 206        
S 11 20230810 09:37:28 10:38:00 00:00:32 KI KI 360 388 375 404 377 547      
T 11 20230810 09:09:28 10:06:00 00:03:28 UU F. 397 287 259 237 242       
U 11 20230810 09:17:03 10:19:00 00:01:57 GX? GX 615 1022          
V 11 20230810 09:46:00 10:46:00 00:00:00 GX GX 102 312 308 312 201 355 408     
W 11 20230810 09:57:02 10:58:00 00:00:58 GX GX 294 240 244 261 338 406 494 625    

SP1 11 20230810 10:48:13 11:48:00 00:00:13 Skua AC 128 124 140 179        
SP2 11 20230810 10:25:13 11:24:00 00:01:13 KI KI 127 116 130 174        
SP3 11 20230810 10:23:06 11:24:00 00:00:54 HG HG 134 92 89 120 164       
SP4 11 20230810 11:04:53 12:05:00 00:00:07 GX GX 655 643 619 623 631 646      
SP5 11 20230810 11:02:34 12:02:00 00:00:34 KI KI 136 146 158 225 318 389      
AB 11 20230809 15:02:56 16:02:00 00:00:56 GX GX 280 265 308 366 418 477 476 723    
AD 11 20230811 10:42:26 11:42:00 00:00:26 GX GX 541 434          
AE 11 20230811 10:47:41 11:47:00 00:00:41 GX GX 398 543          
AF 11 20230811 12:09:13 13:09:00 00:00:13 GX GX 533 627 711         
AG 11 20230811 08:28:36 09:30:00 00:01:24 gull KI 162 217          
AH 11 20230811 08:52:53 n/a n/a gull no match            
AI 11 20230811 08:53:07 09:55:00 00:01:53 KI juv? KI 170 121 99         
AJ 11 20230811 09:34:54 10:35:00 00:00:06 GX GX 245 256 333 386 467 621 776     
AK 11 20230811 09:36:29 10:36:00 00:00:29 GX GX 268 308 340 525        
AL 11 20230811 10:09:45 n/a n/a GX no match            
AM 11 20230811 10:09:59 11:11:00 00:01:01 GX GX 163 131 117 140 156 167      
AN 11 20230811 10:13:11 11:12:00 00:01:11 GX? GX 720           
AO 11 20230811 11:21:15 12:21:00 00:00:15 GX GX 581 478 399 459        
AP 11 20230811 11:21:25 12:21:00 00:00:25 GX GX 581 478 399 459        
AQ 11 20230811 11:25:12 12:25:00 00:00:12 GX GX 632 660 745         
AR 11 20230811 11:26:43 12:26:00 00:00:43 GX GX 714 675 671         
AS 11 20230811 11:27:25 12:27:00 00:00:25 GX GX 615 550 497         
BB 11 20230809 14:05:24 15:05:00 00:00:24 HG HG 388 422 486 589 641 714      
BC 11 20230809 14:21:35 15:22:00 00:00:25 HG HG 295 477          
BD 11 20230810 09:30:40 10:29:00 00:01:40 HG HG 77 113          
BE 11 20230810 10:07:12 11:08:00 00:00:48 HG HG 100 187 236 280 374 437 485 587 582 670  

BF 11 20230811 09:01:49 10:03:00 00:01:11 KI KI 132 177 267 545        
BG 11 20230810 09:17:03 10:17:00 00:00:03 KI KI 227 246 269 287 320 264      
BH 11 20230810 09:45:33 10:44:00 00:01:33 KI KI 386 337 324 336 337 344 371 362 471   
BJ 11 20230810 09:45:50 10:44:00 00:01:50 KI KI 386 337 324 336 337 344 371 362 471   
BK 11 20230810 09:55:54 10:55:00 00:00:54 KI KI 354 340 359 693        
CA 11 20230811 12:45:31 n/a n/a gull no match            

CB1 11 20230811 12:49:26 13:50:00 00:00:34 gull KI 522 479 519         
CB2 11 20230811 12:49:26 13:50:00 00:00:34 gull KI 522 479 519         
CC 11 20230811 12:50:12 13:50:00 00:00:12 GX GX 532 602 666 388        

CD1 11 20230811 12:55:08 13:55:00 00:00:08 GX juv? GX 405 418 497 518 680       
CD2 11 20230811 12:55:22 13:55:00 00:00:22 GX juv? GX 405 418 497 518 680       
CE 11 20230811 12:57:05 13:57:00 00:00:05 gull KI 561 502 507 517 539       
CF 11 20230811 12:57:49 13:58:00 00:00:11 gull KI 571 546 512         

 
Table S4-1. All stereo and mono tracked birds identified as being matches to the LRF field data, based on 
the LRF start times. The camera data is UTC time whereas the field data time is BST (UTC+1hr). NB Large 
jumps in distance since the first LRF reading may be suggestive of the laser beam not hitting the correct 
target or the bird has flown beyond the camera field of view. 
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5 Simultaneously estimating flux and flight height 
distributions using 3D distance sampling 
methods 

5.1 Introduction 
In this report the process of determining the flux of birds around the Aberdeen Bay wind farm 
using camera data is described and the results summarised. Within the wind farm the 
camera setup captures bird tracks travelling through the area. A model is developed using a 
distance sampling framework which utilises these camera data to determine the flux of birds 
within the area. Distance sampling is a means of estimating densities within an area by 
accounting for detectability by utilising the fact that individuals become less detectable at 
greater distances from the observer (Buckland et al., 2001). Accounting for detectability in 
this way allows the estimation of true abundance by accounting for the individuals that were 
not detected. However, distance sampling requires assumptions that are expected to be 
broken within this study. An assumption of concern within this setup is that individuals are 
spread uniformly relative to a point or a line. This is known not to be the case for birds as 
they tend to fly at a preferred range of flight heights and may horizontally avoid turbines. The 
non-uniform distribution of birds must be accounted for to ensure that the distance sampling 
framework can be used. This means that the data should be analysed in three dimensions to 
account for both this vertical distribution of flight heights as well as the horizontal distribution 
of distance from the camera setup. The model that has been developed is described in this 
report before it is then used to perform exploratory analysis using simulated data, which can 
determine any limitations in the analytical methodology. If the model is deemed to be 
suitable, raw data can then be analysed to determine the flux of birds within the wind farm. 

5.2 Model description 
The methods developed were inspired by other work in which distance sampling 
methodology was used when there was a non-uniform distribution of individuals from the 
observer (Cox et al., 2011, Marques et al., 2010). 

Initially the Cartesian coordinates relative to the position of the camera in space needed to 
be transformed to spherical coordinates in the form (𝜌𝜌,𝜙𝜙,𝜃𝜃). This consists of the range from 
the camera 𝜌𝜌, the vertical angle from the camera position 𝜙𝜙 and the horizontal angle 𝜃𝜃 
relative to the plane as shown in Fig. 5-1. 
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Figure 5-1:  Diagram indicating how spherical coordinates are generated from Cartesian coordinates. 

The likelihood used in these papers was akin to that given by Buckland et al. (2016), 
however for the 3D distance sampling setup a correction term was needed to analyse 
volumes rather than areas. 

The likelihood can be summarised as: 

𝐿𝐿𝜌𝜌,𝜙𝜙 = ∏ 𝑔𝑔(𝜌𝜌𝑖𝑖)𝜋𝜋𝜌𝜌�𝜌𝜌𝑖𝑖sin(𝜙𝜙𝑖𝑖)�𝜌𝜌𝑖𝑖
2cos(𝜙𝜙𝑖𝑖)

𝑃𝑃𝑎𝑎
𝑛𝑛
𝑖𝑖=1 , 

with 𝑔𝑔(𝜌𝜌) the function which describes the detectability of points based upon distance from 
the camera, 𝜌𝜌, the vertical distribution of flight heights is described by 𝜋𝜋(𝜌𝜌), and 𝜌𝜌2cos(𝜙𝜙) is 
the volume correction term. 

The likelihood function 𝑃𝑃𝑎𝑎 is: 

𝑃𝑃𝑎𝑎 = ∫ ∫ ∫ 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚(𝜌𝜌)
𝑚𝑚𝑚𝑚𝑚𝑚(𝜌𝜌)

𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃)
𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃)

𝑚𝑚𝑚𝑚𝑚𝑚(𝜙𝜙)
𝑚𝑚𝑚𝑚𝑚𝑚(𝜙𝜙) (𝜌𝜌)𝜋𝜋𝜌𝜌�𝜌𝜌sin(𝜙𝜙)�𝜌𝜌2cos(𝜙𝜙) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 

Dividing by 𝑃𝑃𝑎𝑎 ensures that this is a valid probability density function by integrating across all 
possible values within the field of view. 

The function 𝑔𝑔(𝜌𝜌) is the detectability function and in conventional distance sampling a range 
of functions can be used. It was decided to either use a half-normal or a hazard rate 
function. The half-normal has one less parameter than the hazard rate but the hazard rate 
provides greater control of the shape of the detectability function and allows for scenarios in 
which the probability of detection does not decline rapidly with distance from the camera. 
The half-normal is specified as: 

𝑔𝑔(𝜌𝜌) = exp �−𝜌𝜌
2

2𝜈𝜈2
�, 

whereas the hazard rate function is: 
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𝑔𝑔(𝜌𝜌) = 1 − exp �− �𝜌𝜌
𝜈𝜈
�
−𝛽𝛽
�. 

For both functions 𝜈𝜈 controls the rate of decline in the detection function and the hazard rate 
function has a parameter 𝛽𝛽 which allows for the decline in detectability to be flexible in the 
distance from camera this decline begins. The most appropriate detection function to use will 
be dictated by the data, therefore model comparison can be used to determine the most 
appropriate to use. 

The flight height distribution, 𝜋𝜋�𝜌𝜌sin(𝜙𝜙)�, is described either using a truncated normal or a 
truncated Cauchy distribution. These are both truncated at zero to ensure positive flight 
heights. The Cauchy will be more appropriate to use when there are thicker tails in the data, 
i.e. more data at the extremes of the distribution. Once again model comparison can be used 
to determine the most appropriate to use for each subset of data. 

The model was fitted using the optim function in R using the Nelder-Mead optimisation 
method. Volume integrals were calculated numerically using the integral3d function from the 
pracma package (Borchers, 2023). Model code is available from 
https://doi.org/10.5281/zenodo.14975574 . 

 Density and abundance estimation 

The density and abundance can be derived after fitting the model by using the maximum 
likelihood estimates for the parameters of interest. 

5.2.1.1 Density 

To estimate the density 𝐷𝐷� within the field of view we use the maximum likelihood estimates 
to calculate the probability of detection across the full volume 𝑉𝑉, 

𝐷𝐷� = 𝑛𝑛𝑃𝑃�𝑓𝑓ℎ
𝑉𝑉𝑃𝑃�𝑎𝑎

, 

where 𝑃𝑃�𝑓𝑓ℎ = ∫ ∫ ∫ 𝜋𝜋𝜌𝜌
𝑚𝑚𝑚𝑚𝑚𝑚(𝜌𝜌)
𝑚𝑚𝑚𝑚𝑚𝑚(𝜌𝜌)

𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃)
𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃)

𝑚𝑚𝑚𝑚𝑚𝑚(𝜙𝜙)
𝑚𝑚𝑚𝑚𝑚𝑚(𝜙𝜙) �𝜌𝜌sin(𝜙𝜙)�𝜌𝜌2cos(𝜙𝜙) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, which is the integral of 

the flight height distribution. 

The volume of total space covered by the field of view, 𝑉𝑉, can be calculated using the 
following equation: 

𝑉𝑉 = ∫ ∫ ∫ 𝜌𝜌2𝑚𝑚𝑚𝑚𝑚𝑚(𝜌𝜌)
𝑚𝑚𝑚𝑚𝑚𝑚(𝜌𝜌)

𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃)
𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃)

𝑚𝑚𝑚𝑚𝑚𝑚(𝜙𝜙)
𝑚𝑚𝑚𝑚𝑚𝑚(𝜙𝜙) cos(𝜙𝜙) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 

which uses an integral to estimate the volume of a section of a sphere. 

To estimate the density of birds within a given height band then the density equation can be 
used with integrals that assign probabilities of zero for points outside of the chosen height 
band. 

https://doi.org/10.5281/zenodo.14975574
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5.2.1.2 Abundance 

The estimated true abundance in the field of view, 𝑁𝑁�, also uses the derived density 
estimates within the following equation: 

𝑁𝑁� = 𝐷𝐷�𝑉𝑉. 

5.3 Simulation 
To understand the limitations of the model, data was simulated under a series of scenarios 
and the model was fitted to this simulated data. 

Within a cube of dimensions 2000x1000x250m, points were simulated with uniform 
distribution horizontally and vertical spread determined by the vertical distribution of choice. 
The points were produced with Cartesian coordinates within the cube but these were 
transformed to spherical coordinates using the pracma package in R (Borchers, 2023)  and 
set relative to the camera. The camera height was set to 21.2m above sea level to match the 
position of the cameras within the field setup. Each point was set either as observed or 
unobserved with the probability of detection defined by the range, 𝜌𝜌, of that point from the 
camera according to the chosen detection function. The points marked as observed were 
also only chosen if they were within the field of view of the camera. The raw data from the 
offshore facing cameras were used to determine the field of view used in the simulations. 
This was used to ensure that the geometric setup of the simulated data matched that of the 
true data as closely as possible. The 3D distance sampling model was then fitted to the 
simulated points marked as observed. 

To obtain an appropriate range of simulation scenarios, Latin hypercube sampling was 
undertaken. This was used to sample ranges of values for the input parameters. These 
included; the number of points produced initially within the cube (and so related to the 
sample size), the population mean 𝜇𝜇 and standard deviation 𝜎𝜎 of the flight height distribution, 
the scale parameter 𝜈𝜈 of the detection function (e.g. the standard deviation of the half-normal 
detection function), as well as the shape parameter 𝛽𝛽 of the detection function, if the hazard 
rate detection function was used. A total of 500 simulation runs were done using the random 
values for each simulation scenario. 

Table 5-1: Summary of range of values used in the simulations, each value chosen via latin 
hypercube sampling. 

Simulation parameter Range of values used 

𝜈𝜈 50-700

𝜇𝜇 10-100

𝜎𝜎 5-50

number of points within cube 7000-500000 

𝛽𝛽 2-6
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 Simulation results- half-normal detection function and truncated 
normal flight height distribution 

The analysis was done initially using a combination of the truncated normal distribution, for 
the flight height distribution, and the half-normal detection function. The results will be 
analysed in terms of the accuracy of both the parameters for the detection function and the 
flight height distribution before attempting other simulation scenarios, such as if the true flight 
height distribution is a truncated Cauchy and is analysed using a truncated normal, or the 
impact of using a smaller field of view on the sample sizes required. 

5.3.1.1 Half-normal detection 

For the model using the half-normal detection function and the truncated normal, the output 
of the 500 simulation runs, as shown in Fig. 5-2 shows that the model estimates for 𝜈𝜈 tend to 
be accurate, except when the sample sizes are low, especially at larger values of 𝜈𝜈. Fig. 5-3 
demonstrates this in more detail with the sample size required differing based on the size of 
the 𝜈𝜈. The lower the value of 𝜈𝜈 the fewer the number of samples that are needed to avoid 
bias, but most samples will have a sufficient sample size between 100 and 200 
observations. 

 
Figure 5-2:  Relative bias of the 𝜈𝜈 of the half-normal detection function against the input value of this parameter 
used in the simulation. Coloured by sample size of observed points within the field of view. 
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Figure 5-3:  Relative bias of the 𝜈𝜈 of the half-normal detection function against the sample size of observed points 
in the field of view. Coloured by input 𝜈𝜈 of the half-normal in the simulation. 

5.3.1.2 Flight height distribution 

Currently, the field of view given by the data for the inshore camera gives a steadily 
increasing range of heights above sea level. This means that no point with heights below the 
camera height (of 21.2m) are being obtained. This is summarised in Fig. 5-4. 

Figure 5-4:  Summary of the flight height ranges covered at differing distances from both the inshore and offshore 
facing cameras. Angles for the vertical field of view were obtained from the raw data (i.e. tracks of birds). The 
narrower view angle for the inshore camera is due to a combination of a higher focal length, and a higher horizon 
angle caused by the landmass in the background of the turbine. 

This would be expected to impact the flight height distribution estimates obtained from the 
model in situations when the flight height distribution passes below the camera height. To 
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investigate this within the simulation flight height distributions were created in which the 
distributions were below the camera height. 

From Fig. 5-5, as expected, biases associated with the peak of the distribution are large 
when the 𝜇𝜇 values are low. Even larger values of 𝜇𝜇 have high biases when associated with 
larger values of 𝜎𝜎. Identifiability issues can be seen from this plot by the relative biases 
approaching -1. This occurs when the estimated value of 𝜇𝜇 approaches zero. Again these 
occur mostly when the peak flight height 𝜇𝜇 is low, or when the associated 𝜎𝜎 is large. 

As can be seen from Fig. 5-6, the sample size needed to reduce bias in 𝜇𝜇 depends on the 
input value. Larger values of 𝜇𝜇 reduced the bias using fewer observations, but the model 
struggles even at larger sample sizes when the 𝜇𝜇 is below the camera height. Identifiability 
issues also tend to occur when the sample sizes are small (< 200). 

 
Figure 5-5:  Relative bias of the 𝜇𝜇 of the truncated normal vertical distribution against the input value of this 
parameter used in the simulation. Coloured by the input 𝜎𝜎 value of the flight height distribution of the simulation. 
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Figure 5-6:  Relative bias of the 𝜇𝜇 of the flight height distribution against the sample size of observed points in the 
field of view. Coloured by input 𝜇𝜇 of the flight height distribution in the simulation. Larger sample sizes have been 
removed. 

The bias for 𝜎𝜎 appears to be relatively small as shown in Fig. 5-7. Fig. 5-8 shows that the 
sample sizes required to minimise relative bias is smaller for smaller values of 𝜎𝜎, however 
generally samples sizes  200 are enough to minimise bias. 

Figure 5-7:  Relative bias of the 𝜎𝜎 of the truncated normal vertical distribution against the input value of this 
parameter used in the simulation. Coloured by the input 𝜇𝜇 value of the flight height distribution of the simulation. 
Larger biases have been cut from the plot. 
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Figure 5-8:  Relative bias of the 𝜎𝜎 of the flight height distribution against the sample size of observed points in the 
field of view. Coloured by input 𝜎𝜎 of the vertical distribution in the simulation. Larger relative biases and sample 
sizes have been removed. 

 Simulation scenario- modelling using the wrong flight height 
distribution 

To assess the impact of using the wrong flight height distribution data was simulated using a 
truncated Cauchy, with the range of values shown in Table 1, but then fit to a model with a 
truncated normal distribution. It was found for the 𝜇𝜇 parameter that when there were 
identifiability issues values around −1 were obtained because the 𝜇𝜇 is estimated at around 
0. In Fig. 5-9 it can be seen that there were identifiability issues for a large range of flight 
height peaks when using the wrong flight height distribution. This occurs even at flight 
heights above the camera height. 
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Figure 5-9:  Relative bias of the 𝜎𝜎 of the truncated normal vertical distribution against the input value of this 
parameter used in the simulation. Coloured by the input 𝜇𝜇 value of the flight height distribution of the simulation 
when data is simulated using a truncated Cauchy distribution. Larger biases have been cut from the plot. 

When looking at the associated 𝜎𝜎 for the flight height distribution in Fig. 5-10 it can be seen 
that there is a significant positive bias especially for lower values of the 𝜎𝜎 and when the peak 
flight height is smaller. 

 
Figure 5-10:  Relative bias of the 𝜎𝜎 of the truncated normal vertical distribution based on the input value of this 
parameter used in the simulation. Coloured by the input 𝜇𝜇 value of the flight height distribution of the simulation 
when the data are simulated using a truncated Cauchy distribution. Larger biases have been cut from the plot. 

Overall, these results suggest that the choice of the vertical distribution can have a large 
impact on the identifiability and biases associated with these parameters. Therefore, it is 
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important to analyse with the true flight height distribution and the identifiability issues that 
we are obtaining from the raw data suggest that this could be occurring. 

 Simulation scenario- modelling using the wrong detection function 

Similarly to the flight height distribution there could potentially be issues with specifying the 
wrong detection function. Therefore, in this scenario the data will be simulated using a 
hazard rate detection function but fit to a model that specifies a half-normal detection 
function. Potential biases were then explored in the detection function obtained. Fig. 5-11 
shows that at low values of 𝜈𝜈 there are large biases occurring, the value of 𝜈𝜈 at which the 
values decrease depends on the 𝛽𝛽 value of the hazard rate function, with smaller values 
indicating larger biases at higher values of 𝜈𝜈. Again this indicates the importance of using the 
most appropriate detection function within the analysis. 

 
Figure 5-11:  Relative bias of the 𝜈𝜈 of the detection function against the input value of this parameter when the 
data is simulated using a hazard rate detection function and fitted to a model with a half-normal detection 
function. Coloured by the input 𝛽𝛽 value of the hazard rate detection function. Larger biases have been cut from 
the plot. 

 Simulation scenario- modelling using a narrower field of view 

So far, the data has been simulated using the minimum and maximum values from the raw 
data from the offshore cameras as the range of the vertical field of view. However, when 
using the raw tracks data will also be collected from the inshore facing camera pair, which 
have a narrower field of view than the offshore facing cameras. Therefore, a simulation was 
done using the raw data from the inshore facing cameras as well, to check the sample sizes 
required for this camera setup. Fig. 5-12, 5-13 and 5-14 indicate that the sample sizes are 
similar in this field of view compared to the larger offshore field of view. 
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Figure 5-12:  Relative bias of the 𝜈𝜈 of the half-normal detection function against the sample size within the field of 
view. Coloured by the input 𝜈𝜈 value used to simulate the data. Larger biases have been cut from the plot. 

Figure 5-13:  Relative bias of the 𝜇𝜇 of the truncated normal vertical distribution against the sample size within the 
field of view. Coloured by the input 𝜇𝜇 value of the flight height distribution of the simulation. Larger biases have 
been cut from the plot. 
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Figure 5-14:  Relative bias of the 𝜎𝜎 of the truncated normal vertical distribution against the sample size within the 
field of view. Coloured by the input 𝜎𝜎 value of the flight height distribution of the simulation. Larger biases have 
been cut from the plot. 

 Simulation summary 
• Generally the 3D distance sampling methodology works well with unbiased estimates 

of the three parameters used in the model. 

• Occasions in which biased results or identifiability issues occur is when the peak 
flight height is not within the field of view of the camera, or when the associated 
standard deviation around the peak flight height is large and thus extends beyond the 
field of view of the camera. 

• Greater biases and identifiability issues occur when the data is fitted to a model that 
has a different detection function or flight height distribution to that found within the 
data. Several options can be used in the modelling framework and model comparison 
can be used to determine the most appropriate combination to use. 

• Generally a sample size of 150-200 is enough to remove the majority of biases, 
although this can be dependent on the true values of the parameters, with lower 
sample sizes needed at higher flight height peaks, at lower standard deviations 
around this and lower values of the 𝜈𝜈 in the detection function. 

5.4 Raw data analysis 
The raw data consists of tracks of birds which have passed by the camera setup in the wind 
farm. For the 3D distance sampling analysis individual points were used rather than tracks. 
From each track a single point was chosen randomly to be used in the analysis. Raw data 
were obtained from four cameras on the wind turbine, two of which face inshore and two 
offshore. The inshore and offshore cameras also have differing fields of view and therefore it 
was decided to subset the data based upon camera direction. Tracks were also analysed at 
the species level to provide species level estimates of flux and flight height. From the 
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simulation studies it was decided that at least 150 tracks will be collected for analysis for 
each of European Herring Gull, Black-legged Kittiwake and Northern Gannet for both the 
inshore and offshore facing cameras. To determine if the model is producing robust results 
identifiability of the parameters can be checked by obtaining the scaled minimum 
eigenvalues, which, if small, suggest identifiability issues and that the estimates may not be 
robust (Chis et al., 2016, Cole and Morgan, 2010). 

Table 5-2 summarises the amount of data gathered for each species for each camera pair, 
including all species grouped together and all gull species. 

Table 5-2: Summary of number of tracks within the field of view of each camera pair for each 
species or species group. 

Species Tracks- Offshore facing Tracks- Inshore facing 

All 1675 1675 

Gull 1264 1578 

European Herring Gull 652 986 

Black-legged Kittiwake 252 250 

Northern Gannet 416 92 

The data was then fitted to the 3D distance sampling model after being subset by species 
and camera pair. The model was fitted using the half-normal detection function and the 
truncated normal distribution to describe the flight height distribution. The values of the limits 
used in the integrals were obtained from the raw data, including the maximum and minimum 
values of 𝜙𝜙 and 𝜃𝜃 and the maximum value of 𝜌𝜌. The minimum value of 𝜌𝜌 was set as 0. Table 
5-3 summarises the results obtained from the model for each species and camera pair.

Table 5-3: Estimates for species from the 3D distance sampling model for each camera pair. 

Species 
Camera 
Pair 

Mean flight 
height 𝜎𝜎 flight height 𝜈𝜈 detection Density 

HG Offshore 79.01 (70.66, 
87.37) 

39.77 (30.94, 
48.59) 

263.29 (229.8, 
296.79) 

807.34 (687.79, 
968.98) 

HG Inshore 74.04 (67.78, 
80.31) 

47.79 (38.52, 
57.06) 

479.47 (424.44, 
534.5) 

571.4 (506.22, 
669.12) 

KI Offshore 38.42 (36.2, 
40.63) 

15.26 (13.35, 
17.17) 

251.88 (194.61, 
309.15) 

206.38 (167.84, 
262.55) 

KI Inshore NA (NA, NA) NA (NA, NA) NA (NA, NA) NA (NA, NA) 

GX Offshore 43.73 (41.01, 
46.44) 

21.91 (19.64, 
24.18) 

499.35 (408.19, 
590.51) 

28.97 (25.05, 
36.45) 

GX Inshore 0.00032 (-0.12, 
0.12) 

40.94 (34.38, 
47.49) 

759.93 (356.17, 
1163.69) 

42.81 (34.49, 
76.86) 

Table 3 demonstrates the difficulty that was encountered using the inshore facing camera 
data for the Kittiwake and Gannet data. The Kittiwake model was not identifiable and the 
Gannet model provided a flight height result that was similar to those seen in the simulation 
studies when the model was not identifiable due to the mean flight height being below the 
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field of view of the camera. It was believed that this could be due to potential masking of 
individuals in the camera field of view due to the land, as well as the smaller field of view of 
the inshore facing cameras. It was therefore decided to concentrate on the results from the 
offshore facing cameras. The results from these cameras indicate that the mean flight height 
is largest for the Herring Gull and lowest for the Kittiwake. This is in agreement with other 
studies that state that the Herring Gull flies at greater heights than other gull species and the 
Gannet (Jongbloed, 2016) . It was also found that the Gannet exhibited greater detectability 
at larger distances which was expected as this species is larger and therefore easier to 
detect at these distances. Herring Gull was also shown to have the greatest densities in the 
observed field of view whereas the Gannet occurred in the lowest densities. 
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Figure 5-15: Detectability and density estimates derived by the distance sampling model are conditional on birds 
being tracked and identified to species level. The identification process appears to be the limiting factor in this 
workflow, as the proportion of unidentified birds increases with nominal distance from the camera. 
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 Weather covariates 

The bird flight track data were collected on different days across the study. These will have 
different weather conditions associated with them and could impact the detectability of 
species as well as the flight height of species (Jongbloed, 2016; Aschwanden et al., 2024). 
Therefore, it was decided to attempt various models that combined placing a weather 
covariate on the 𝜈𝜈 of the detectability function, the 𝜇𝜇 of the flight height distribution and the 𝜎𝜎 
of the flight height distribution. This will be done by adding weather condition categorical 
data to the model. Table 5-4 indicates the constitution of these weather covariates for each 
species. 

Table 5-4: Summary of number of tracks within the field of view of the offshore facing 
camera for all species, Herring Gull, Kittiwake and Gannet for the weather condition 
categories. 

Weather Condition Tracks-All Species Tracks-Herring Gull Tracks-Kittiwake Tracks-Gannet 

Clear 169 16 40 63 

Fair 92 26 9 35 

Cloudy 160 63 15 51 

Overcast 498 183 82 57 

Rain 431 300 18 36 

Fog 15 0 0 12 

Light Rain 106 37 11 29 

Light Snowfall 20 7 0 0 

Rain Shower 4 0 1 2 

Snow Shower 16 2 0 0 

Snowfall 9 4 2 0 

It is expected that for weather conditions that restrict visibility of the camera the 𝜈𝜈 parameter 
will be lower as detection declines more rapidly with distance from the camera and that birds 
fly higher during clearer weather conditions (Aschwanden et al., 2024). The weather 
condition data used was from Aberdeen Bay and was collected at hourly temporal scales. 
Each track was then matched to the weather condition at the nearest hour. The distance 
sampling model used the half-normal detection function and the truncated normal flight 
height distribution. When adding the weather covariate, the integral required calculation 
separately for each data point. This slows down the computation speed of the distance 
sampling model. The offshore facing cameras were used as these had fewer identifiability 
issues compared with the inshore facing cameras and therefore will be more robust to these 
additions. Furthermore, it was decided to only use the categories which had enough data to 
fit to the distance sampling model. This included joining categories which we believed were 
similar, such as the cloudy and overcast, and clear and fair categories into two distinct 
categories. 
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Data was subset by species and it was decided that there was enough data for two weather 
conditions for each species. The Herring Gull was analysed using the rain (300) and 
cloudy/overcast (246) categories. The Kittiwake and Gannet data were analysed using 
clear/fair and cloudy/overcast categories for each. For the Gannet the clear/fair category had 
98 tracks and the cloudy/overcast category had 108 tracks. For the Kittiwake the clear/fair 
category had 49 tracks and the cloudy/overcast category had 97 tracks. 

Table 5-5 indicates the outputs for each species and the values of the detection function and 
the flight height under the different weather conditions. A single 𝜎𝜎 was estimated for the flight 
height distribution for each species model. 

Table 5-5: Estimates for species from the 3D distance sampling model using data from the 
offshore facing camera pair for the different weather conditions in a model that allows 
variation in the mean flight height and nu detection based on weather conditions. 

Species Weather 
Mean flight 
height 𝜎𝜎 flight height 𝜈𝜈 detection Density 

HG Rain 88.84 (79.86, 
97.82) 

32.51 (26.56, 
39.77) 

404.47 (215.54, 
593.41) 

860.84 (708.14, 
2257.19) 

HG Cloudy/overcast 53.37 (40.12, 
66.61) 

32.51 (26.56, 
39.77) 

210.93 (19.95, 
401.91) 

1181.88 (951.49, 
1518.28) 

GX Clear/fair 43.76 (38.97, 
48.55) 

20.18 (17.24, 
23.12) 

484.2 (321.49, 
646.9) 

34.45 (27.67, 
58.96) 

GX Cloudy/overcast 39.77 (33.2, 
46.35) 

20.18 (17.24, 
23.12) 

541.14 (271.61, 
810.67) 

29.5 (23.85, 
54.85) 

KI Clear/fair 38.35 (33.47, 
43.24) 

15.03 (12.63, 
17.43) 

208.78 (143.16, 
274.41) 

203.94 (144.67, 
420.82) 

KI Cloudy/overcast 38.42 (32.43, 
44.41) 

15.03 (12.63, 
17.43) 

283.94 (147.25, 
420.62) 

232.51 (182.28, 
491.01) 

A significantly higher mean flight height was seen for the Herring Gull in rainy conditions 
compared with cloudy/overcast conditions. Other studies have shown that birds tend to fly at 
lower altitudes in rainy conditions (Aschwanden et al., 2024; Hüppop et al., 2006). Gannets 
fly higher in clear/fair which agrees with what has been seen in other species (Aschwanden 
et al., 2024). The detectability at greater distances was best for the Gannet and when there 
is better visibility. The detectability of the Herring Gull is greater at larger distances in the 
Herring Gull in rainy conditions than for overcast conditions, although the 95% confidence 
intervals overlap to a large extent, similar to what is occurring for the Gannet. 

Table 5-6: AIC values for the models which vary by how the weather condition covariate was 
added, either not added, added to the 𝜈𝜈 of the detection probability only or added both to the 
detection probability as well as the 𝜇𝜇 of the flight height distribution. 

 
No 
covariates 

Weather on 
detection 

Weather on detection 
and flight height 

Weather on detection and 
mu and sigma flight height 

HG 3565.84 3507.34 3472.34 3475.40 

GX 1424.82 1426.74 1425.53 1427.49 
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No 
covariates 

Weather on 
detection 

Weather on detection 
and flight height 

Weather on detection and 
mu and sigma flight height 

KI 910.09 912.05 914.01 913.16 

Table 5-6 shows that the model with no weather covariate is favoured by both the Kittiwake 
and Gannet, however a model that contains a weather covariate on both the 𝜈𝜈 and 𝜇𝜇 terms is 
favoured for the Herring Gull data. 

 
Figure 5-15:  The estimated half-normal detection function and truncated normal flight height distribution with 
associated 95% confidence intervals for the full European Herring Gull dataset as well as separated by the 
weather condition. For the flight height distribution the extent of the rotor swept zone within Aberdeen Bay is 
within the yellow lines. 



96 

Figure 5-16:  The estimated half-normal detection function and truncated normal flight height distribution with 
associated 95% confidence intervals for the full Northern Gannet dataset as well as separated by the weather 
condition. For the flight height distribution the extent of the rotor swept zone within Aberdeen Bay is within the 
yellow lines. 



97 
 

 
Figure 5-17:  The estimated half-normal detection function and truncated normal flight height distribution with 
associated 95% confidence intervals for the full Black-legged Kittiwake dataset as well as separated by the 
weather condition. For the flight height distribution the extent of the rotor swept zone within Aberdeen Bay is 
within the yellow lines. 

5.4.1.1 Flux within rotor swept zone 

The flux within the observed field of view has been calculated already but using the flight 
height distribution we are able to determine flux within different height bands. Therefore, it is 
possible to calculate the amount of flux within and outside the rotor swept zone. The rotor 
swept zone for these turbines is between 27-191m above sea level. Therefore, the flux 
below this height range for each species would be the flux outside the rotor swept zone. 

The flux within and under the rotor swept zone can only be calculated using the data from 
the offshore facing cameras because as can be seen from Fig. 5-4 the field of view of the 
inshore facing cameras do not contain much data beneath the rotor swept zone. 

Fig. 5-18 shows the estimated flight height distribution for the three species analysed with 
the area of the rotor swept zone indicated between the yellow lines to indicate the extent of 
the birds flying at these heights. The flux is also shown for the full field of view as well as 
within and under the rotor swept zone for the full dataset, as well as in the different analysed 
weather conditions. 
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Figure 5-18:  The outputs of the 3D distance sampling model for the Herring Gull, Gannet and Kittiwake with the 
truncated normal flight height distribution for the separate weather conditions as well as the full dataset. 
Additionally, there is the density estimates for the separate weather conditions as well as the full dataset as well 
as the density estimates within and under the rotor swept zone of the turbines in Aberdeen Bay. 

Although the data is used for below the rotor swept zone for the offshore facing cameras the 
area within the field of view is relatively small in this area. This means that the density 
estimates can be sensitive to small increases in the number of birds within this area. 
Therefore, we would recommend that the estimates be used with caution and if the flux 
within and outside the rotor swept zone is of particular interest then a setup in which the field 
of view takes in the area below the rotor swept zone to a greater extent. 

5.5 Simulation - accounting for observation error 
The analysis has thus far been undertaken with the assumption that there is no observation 
error in the position of points used in the distance sampling analysis. However, it is likely that 
this is not the case. When comparing tracks produced from the mono-vision cameras to the 
same tracks from stereo-vision cameras an error has been discovered in the estimation of 
the points. The stereo-vision is better able to estimate positions than the mono-vision setup 
and therefore when comparing the two the stereo-vision was taken as being the true position 
of the bird in space. Currently it is not possible to carry out the distance sampling analysis on 
the stereo-vision data because there has not been enough data collected from these 
cameras. To determine the size of the observation error when using the mono-vision 
cameras the relationship between the stereo-vision and the mono-vision cameras can be 
determined using linear regression. This was carried out in a Bayesian framework and 
predictions from the posterior were made to produce a set of 1,000 different estimates of the 
true distances for the raw Kittiwake data for the offshore facing camera. These 1,000 
datasets were used along with the distance sampling model to produce new maximum 
likelihood estimates for the three parameters within the model. The maximum likelihood 
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estimate for each was compared to the maximum likelihood estimate from the uncorrected 
mono-vision data to determine biases in the three parameters, as well as biases in the 
derived density estimates. 

Although we are explicitly accounting for range error it is also understood that there will be 
an error in the flight height estimates as well. Fig. 5-19 shows the extent of the flight height 
error in relation to the range error for the range of the vertical field of view from the Kittiwake 
data for the offshore facing cameras, plus when the angle is 0, which is when the bird is 
spotted directly ahead of the camera. 

 
Figure 5-19:  The change in absolute flight height error for a range of absolute range error values dependent on 
the input vertical angle relative to the central axis of the camera. 

This shows that as the range error goes from negative to positive for points above the 
central axis that the flight height will go from being underestimated to overestimated, 
whereas the opposite occurs for birds seen below the central axis. This is accounted for in 
the simulation as the updated range values are used to recalculate the flight height while 
assuming that the vertical angle remains constant. 

The relative biases for the three parameters as well as the derived density estimates were 
calculated from the 1,000 simulation runs. Fig. 5-20 indicates these biases. 
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Figure 5-20: Relative biases calculated across 1,000 simulation runs for the 𝜈𝜈, 𝜇𝜇 and 𝜎𝜎 parameters as well as the 
derived density estimates. The true values were obtained from uncorrected mono-vision data for the Black-
legged Kittiwake for the offshore facing camera, these were compared to the corrected estimates for each data 
point for the same dataset but the correction was obtained from a posterior prediction from a Bayesian linear 
regression of the mono-vision against the stereo-vision ranges for tracks from the raw data. This was done using 
1,000 different posterior predictions. 

The relative biases indicate that without accounting for observation error we would be 
overestimating both 𝜈𝜈 and 𝜇𝜇, whereas we would be underestimating the density estimates 
produced. For 𝜎𝜎 there is also a slight bias which leads to underestimation. 

5.6 Simulation - accounting for avoidance 
The distance sampling model also makes the assumption that there is no avoidance of the 
wind turbines of the birds. There are different spatial scales of avoidance. These are 
described as macro, meso and micro-avoidance. Macro-avoidance is when birds will avoid 
the wind farm altogether. This cannot be accounted for as we only view birds within the wind 
farm environment. Micro-avoidance are small scale movements of the bird as they avoid a 
turbine at short distances. This should not impact our distance sampling model as these are 
just small scale movements at distances that will not be picked up by the cameras. The 
scale in which we are interested is meso-avoidance. This is between macro and micro-
avoidance where birds change behaviour within the wind farm and avoid turbines at 
distances of tens to hundreds of metres. Currently the models assume that this avoidance 
does not occur and it is likely that identifiability issues would occur if this avoidance was 
added to the model, due to the difficulty in separating this from the detection probability 
which also relies on distance from the turbine. However, simulations can be created using 
the levels of meso-avoidance that are expected from the three species under analysis and 
then fit the model that does not account for avoidance and determine if there are any biases 
or inaccuracies in the outputs based on this assumption. 

To simulate the avoidance a variogram function will be used to determine the probability of 
presence of an individual based upon the distance from the camera. The variogram is 
specified as being a function of the distance from the camera, 
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 ℎ(𝜌𝜌) = 𝑛𝑛 + (1 − 𝑛𝑛) �1 − exp �−3𝜌𝜌
𝑟𝑟
��, 

with 𝑟𝑟 being the ‘range’ which is the distance at which there is no avoidance of the turbine, 
and 𝑛𝑛 which is the ‘nugget’, which is the probability of presence at a range of 0m from the 
turbine. These values will be obtained from Tjørnløv et al. (2023) who investigated levels of 
avoidance of bird species within Aberdeen Bay. 

For this simulation a level of avoidance will be produced that matches each of the three 
species and other values within the simulation will be set as of Table 5-7 with a range of 
values for 𝜈𝜈 as the importance of avoidance is expected to depend on these detectability 
distances. The half-normal detection function was used for these simulations, as well as the 
truncated normal flight height distribution. 

Table 5-7: Summary of values and range of values used in the simulations. For a range of 
values each value was chosen via latin hypercube sampling. 

Simulation component Range of values used 

𝜈𝜈 50-700 

𝜇𝜇 50 

𝜎𝜎 10 

number of points within cube 50000 

The values for the ‘nugget’ and the ‘range’ for the variogram will be obtained for each 
species from Tjørnløv et al. (2023). For the Herring Gull this was set to be 0.3 and 100m for 
the ‘nugget’ and ‘range’ respectively. For the Gannet this was 0.5 and 40m, whereas for the 
Kittiwake this was 0.5 and 150m. This translates into the probability of presence of a bird for 
each species depending on the distance from the turbine and is summarised in Fig. 5-21. 

 
Figure 5-21:  The variogram functions to describe how the probability of presence changes with each species as 
distance from the turbine increases. Values for these were obtained from Tjørnløv et al. (2023) 
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To account for avoidance a set of data was simulated using values in Table 7. Once these 
values were simulated then each point was either retained or discarded randomly using a 
binomial distribution with probability values based upon the variogram for each species. This 
removed some points that were closer to the turbine from the data. The simulation then, as 
with the simulations in earlier sections, uses the detection function to determine if individuals 
were detected or not using these probabilities within another binomial distribution. 

Data was simulated 250 times for each species match and each set of simulated data were 
then fit to the 3D distance sampling model, which doesn’t account for avoidance in the 
modelling. This will show us whether not accounting for avoidance causes any biases in the 
results obtained from the model. Any biases in the three parameters are shown in Fig. 5-22. 

Figure 5-22:  Simulation results for each of the matches to the three species showing the relative biases in the 
estimated parameters based on input values of 𝜈𝜈. 

From these plots we can see that when the detection range 𝜈𝜈 is shorter than the avoidance 
distance then there are inaccuracies for estimates of all three parameters. This should not 
be an issue for the three species we investigated at this site as the detection range values 
estimated were greater than the avoidance ranges for these species observed by a previous 
study in the same OWF. There also appears to be a negative bias at greater values of 𝜈𝜈 for 
the estimate of this parameter, meaning that this detection distance is underestimated. 
Again, these are at greater distances than encountered for the three species analysed. 
Nonetheless, the simulation results highlight that meso-avoidance behaviour needs to be 
assessed using auxiliary data (e.g. from tracking) or by improving the system capabilities to 
reliably track birds in the immediate vicinity of focal turbines to ensure that the assumptions 
of the distance sampling model are not violated in a way that compromises estimated bird 
densities. 
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5.7 Conclusions 
In this report a 3D distance sampling model has been created and shown to work well in 
simulation scenarios. Given sample sizes above 100-200 bird detections accurate estimates 
of flight height can be made at the same time as estimates of bird densities within the 
observed volume, accounting for imperfect detection. These estimates in principle allow the 
estimation of flux within and outside of the rotor swept zone, which is of interest for collision 
risk assessments. However, estimates of bird densities below the rotor zone were less 
robust in this study, as the cameras were focussed on the rotor swept zone and provided 
less good coverage of the near-surface stratum. This was an a priori design choice, as the 
original focus of the study was to capture micro-avoidance behaviour in the rotor swept 
zone. For the same reason, the object tracking algorithm for this study was optimised to 
track birds in front of the sky only. The addition of tracking capabilities for birds in front of the 
sea or land surface to the mono-vision system would likely greatly improve flux and flight 
height estimation in future deployments, by providing much better coverage of the airspace 
close to the sea surface. Tracking algorithms with these capabilities have been deployed in 
other Spoor AI installations, but site-specific training data is required for these and collection 
thereof was outside the scope of the current study. 

Estimates of total bird flux were difficult to obtain due to species-specific variation in both 
flight height and detectability, we therefore found that it is best to analyse species 
separately. The modelling framework can accommodate variations in both detectability and 
behaviour due to weather conditions, although sample size must be large enough. 

Estimated detection functions varied by species and with camera focal length, and under 
different environmental conditions. Half-normal detection function standard deviations 
ranged from c. 250m for Kittiwake at 48mm focal length lens to c. 750m for Gannet at 70mm 
focal length (nominal distances from mono-vision reconstructions). At a range of 500m this 
translates to detections of c. 14% of available Kittiwake in the former case, and 80% of 
available Gannets in the latter. 

We also determined the impact of various assumptions made in the modelling framework on 
the results that are obtained. Specific model features that would benefit from further 
development are the assumptions that there is no meso-avoidance occurring and that there 
are no observation errors in the position of points.  

Simulation results showed that violations of the assumption that there is no meso-avoidance 
can result in the inaccuracy of estimates if the detectability distance is within the avoidance 
range of a species, or if the detection distance is large. For the species and site studied here 
neither was the case. However, a parametric avoidance function can in principle be added 
into future iterations of this modelling framework, as long as information about the strength 
and scale of avoidance are available (e.g. from independent radar or biologging data; 
Tjørnløv et al., 2023, Pollock et al., 2024). Estimation of these parameters directly from 
imagery data in the current setup is difficult if not impossible, given the confounding of the 
detection and avoidance functions at the camera location, and the very small sampled 
volume in the vicinity of the camera. However, in principle similar monitoring setups with a 
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sufficiently large detection range to reliably monitor avoidance around the focal turbine 
and/or using multiple cameras could overcome this limitation and allow for the simultaneous 
estimation of both horizontal and vertical density gradients in the presence of imperfect 
detection. 

Accounting for the observation error that is present in the data being used is more critical. 
Current detectability, range, and flight height estimates are conditional on the nominal 
ranges returned from the mono-vision system, which may contain substantial measurement 
error (cf. section 4-3) and as a consequence we show the model likely overestimates mean 
flight height and the detection range, and hence underestimates the density of birds within 
the observed field of view. Additional validation based on a large number of stereo-vision 
tracks, and/or improved calibration of the mono-vision distance estimation procedures are 
desirable, as model-based correction of large measurement errors is challenging (Marques, 
2004).  

Lastly, the current modelling approach removes potential issues with autocorrelated 
detections by randomly subsampling reconstructed tracks. Methods for the use of 
continuous video footage in distance sampling models exist (Howe et al., 2017), as do 
methods that more formally account for movements of birds through the sampled volume 
(Glennie et al., 2021) and could be integrated with the framework developed here. 
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6 General conclusions and recommendations 
Imagery-based three-dimensional (3D) tracking systems based on relatively simple camera 
hardware show considerable potential for cost-effective, scalable monitoring of avian 
interactions with wind farms. Current CRMs generally combine flux and flight height 
information from areas outside of OWFs with avoidance factors that account for behaviours 
at micro-, meso- and macro-scale, but which are generally associated with large 
uncertainties. Empirical estimates of flux and flight height distributions within OWFs describe 
bird behaviour where it is most relevant for collision risk. In-situ 3D tracking therefore has the 
potential to greatly reduce uncertainties in collision risk estimates from collision risk models 
(CRMs). However, the effectiveness of such systems depends on addressing both 
technological and environmental constraints.  

All monitoring methods are imperfect, and therefore appropriate quantification of 
uncertainties and biases are required to create robust evidence and inferences. The 
technology market for offshore bird monitoring systems is growing, but transparent 
evaluations and validations of systems are generally lacking. Our study shows that both 
mono-vision and stereo-vision systems powered by Spoor AI can reconstruct the trajectories 
of well-defined targets under controlled conditions at ranges of at least 500m. 

We further highlight the challenges posed to single-camera (mono-vision) systems by intra-
specific body size variation in seabirds and raptors to optimise monitoring strategies and 
mitigate the ecological impacts of wind farms. Stereo-vision systems are not affected by this 
constraint and deliver superior accuracy at ranges up to 500m even with short baseline 
distances and unsynchronized cameras, but the calibration requirements and analytical 
workflows for stereo systems pose significant challenges in practical deployment. In 
contrast, mono-vision systems are more scalable but require further refinement to achieve 
the precision needed for specific tasks, such as the assessment of micro-avoidance 
behaviours at large ranges. Integrating the strengths of both approaches could pave the way 
for reliable and scalable bird monitoring solutions in renewable energy contexts. Finally, we 
present a 3D distance sampling model that can simultaneously estimate bird densities and 
flight height distributions, providing valuable insights into bird behaviours within offshore 
wind farms, albeit with some simplifying assumptions. 

Improving the usability and performance of both stereo-vision and mono-vision systems 
should be the focus of future work and in particular we recommend additional work in the 
following areas:  

1. Stereo-vision capability:

1.1. Improve rigidity of camera housings in the stereo configuration and monitor camera
drift automatically using the horizon and observed turbine(s) for horizontal and 
vertical referencing and recalibration. 

1.2. Conduct in-situ calibration using drones or surface vessels as reference objects 
following installation. 
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1.3. Optimise baseline distances, increase image resolution and/or increase frame rate 
to enhance stereo-vision range and accuracy. 

1.4. Develop automated methods for stereo tracking to reduce manual processing time 
and effort. 

2. Mono-vision capability: 

2.1. Improve range calibration, e.g. by using matched stereo-vision trajectories. 

2.2. Extend tracking algorithms to capture birds below the horizon, i.e. in front of the sea 
or land surface, and optimise camera focal length and orientation to ensure the field 
of view includes the airspace below the rotor swept zone. 

2.3. Improve detection of movement artefacts caused by bounding box fluctuations 
around flapping birds. 

3. Further validation: 

3.1. Extend data processing of collected footage and collect additional footage to capture 
bird behaviour across a wider range of environmental conditions and bird species. 

4. Application strategy: 

4.1. Use mono-vision systems for long-term monitoring due to their scalability and cost-
effectiveness. 

4.2. Apply stereo-vision systems for short-term studies and/or in small numbers to collect 
validation and ground-truthing data. 

5. Data collection: 

5.1. Increase sample sizes and expand camera fields of view to enhance data reliability, 
especially below the rotor swept zone. 

6. Flux/density models: 

6.1. Address meso-avoidance effects, observational inaccuracies, repeated measures 
and movement through improved data calibration and modelling. 
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